Servo Motor + Ultrasonic Sensor

Huaishu Peng | UMD CS | Fall 2023
Servo Motor

Low-speed, high-torque motor with precise positional control

A control signal is sent to the servo to position the shaft to desired angle.

When to use it?
What is a servo motor?

a motor with a built-in “servomechanism”.

Consist of:

An electric motor (e.g., DC motor)

A feedback device

An electronic controller
What is a servo motor?

Motors can be DC, or AC

Feedback device can be encoder or other sensors for position sensing
Servo Motor

What we have today is a RC servo motor (because it is designed for RC car at the beginning)

Rotational range: 0 ~ 180 degree

Wire connection: Power (Red) | GND (Brown) | Signal (Orange)

Operating Voltage: 5V
Pulse Width Modulation (PWM)
Controlling the position of a servo motor

Servo Motors

Pulse Width Modulation

- 1.5 ms: 90°
- 1.0 ms: 0°
- 2.0 ms: 180°

Diagram not to scale

https://dronebotworkshop.com
Using a Servo lib

1. Install the ESP32servo lib from the library manager
Using a Servo lib

2. Wiring

Wire connection: Power (Red) | GND (Brown) | Signal (Orange)

5V GND GPIO 13
Using a Servo lib

3. Coding

```cpp
#include <ESP32Servo.h>

Servo myservo;

int pos = 0;
int servoPin = 13;

void setup() {
    myservo.attach(servoPin, 500, 2600); // attaches the servo on pin 13 to the servo object
    // different servos may require different min/max settings
    // for an accurate 0 to 180 sweep
}

void loop() {
    for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
        // in steps of 1 degree
        myservo.write(pos); // tell servo to go to position in variable 'pos'
        delay(15); // waits 15ms for the servo to reach the position
    }
    for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
        myservo.write(pos); // tell servo to go to position in variable 'pos'
        delay(15); // waits 15ms for the servo to reach the position
    }
}
```
Pulse Width Modulation (PWM)

Can you control the servo motor without using Lib but just PWM?
Hint:

For our servo motor:

- Pulse width: 20ms
- 0.5ms -> 0 degree
- 2.6ms -> 180 degree

Supporting functions you might need:

```cpp
map(x, fromA, toA, fromB, toB);
```

```cpp
delayMicroseconds(x);
```
```cpp
#include <ESP32Servo.h>

Servo myservo;

int pos = 0;
int servoPin = 13;

void setup() {
    myservo.attach(servoPin, 500, 2600); // attaches the servo on pin 13 to the servo object
    // different servos may require different min/max settings
    // for an accurate 0 to 180 sweep
}

void loop() {
    for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
        myservo.write(pos);  // tell servo to go to position in variable 'pos'
        delay(15);           // waits 15ms for the servo to reach the position
    }
    for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
        myservo.write(pos);  // tell servo to go to position in variable 'pos'
        delay(15);           // waits 15ms for the servo to reach the position
    }
}
```
int pos = 0;
int servoPin = 13;

void setup() {
 pinMode(servoPin, OUTPUT);
}

void loop() {
 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
 // in steps of 1 degree
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}
int pos = 0;
int servoPin = 13;

void setup() {
 pinMode(servoPin, OUTPUT);
}

void loop() {
 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

void angle(int a)
{
}
void angle (int a)
{
 int highTime = map(a, 0, 180, 500, 2600);
 int delayTime = 20000 - highTime;

digitalWrite(servopin, HIGH);
delayMicroseconds(highTime);
digitalWrite(servopin, LOW);
delayMicroseconds(delayTime);
}

Supporting functions you might need:
Map(x, fromA, toA, fromB, toB);
delayMicroseconds(x);

Servo Motors
Pulse Width Modulation

0.5ms

2.6ms
Diagram not to scale

https://servothebowelstop.com
Ultrasonic Sensor HC – SR04
The time between the transmission and reception of the signal allows us to calculate the distance to an object. This is possible because we know the sound’s velocity in the air.
VCC: +5VDC
Trig : Trigger (OUTPUT)
Echo: Echo (INPUT)
GND: GND
Arduino has library for it, but Can you do it without library?

Hint:

a. The sensor is triggered by a HIGH pulse of 10 or more microseconds.

b. To read the sensing signal: a HIGH pulse whose duration is the time (in microseconds) from the sending of the ping to the reception of its echo off of an object.

Google: pulseIn()
VCC: +5VDC
Trig : Trigger (OUTPUT)
Echo: Echo (INPUT)
GND: GND

```cpp
int dist()
{
    long duration, distance = -1;

digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH);
distance = (duration/2) * 0.0343;

if(distance >= 20)
{
    Serial.println("Out of range");
}
else
{
    Serial.print(distance);
    Serial.println(" cm");
}
return distance;
}```
Assignment:

Make a simple radar with the servo motor and the ultrasonic sensor. Code should not use the servo library.

You can use duct tape/hot glue/rubber band/screws from the sandbox to ensure the ultrasonic sensor is firmly attached to the servo motor.

Submission:
Code + Video

In the video, please put some obstacles in front of your radar and show the distance reading changes from the serial port.

Optional: write a GUI with processing. You will get up to 5 bonus points in Assignment 4 for the GUI processing program.
Radar using Processing 3