Servo Motor +
Ultrasonic Sensor

Huaishu Peng | UMD CS | Fall 2022
Servo Motor

Low-speed, high-torque motor with precise positional control

A control signal is sent to the servo to position the shaft to desired angle.

When to use it?
What is a servo motor?

a motor with a built-in “servomechanism”.

Consist of:

An electric motor (e.g., DC motor)

A feedback device

An electronic controller
What is a servo motor?

Motors can be DC, or AC

Feedback device can be encoder or other sensors for position sensing
What we have today is a RC servo motor (because it is designed for RC car at the beginning)

Rotational range: 0 ~ 180 degree

Wire connection: Power (Red) | GND (Brown) | Signal (Orange)

Operating Voltage: 5V
Pulse Width Modulation (PWM)
Controlling the position of a servo motor
Using a Servo lib

1. Install the ESP32servo lib from the library manager

```
File Edit Sketch Tools Help
NodeMCU-32S

LIBRARY MANAGER

esp32servo
Type: All
Topic: All

ESP32Servo by Kevin Harrington, John K. Bennett
Version 0.12.0
INSTALLED
This library can control many types of servos. It makes use of the ESP32 PWM timers: the library can control up to 16 servos on individual channels. No attempt has been made to support multiple servos per channel. Allows ESP32 boards to control servo, tone and analogWrite motors using Arduino semantics.
More info

ESP32Servo360 by Sébastien Matos
Control Parallax Feedback 360° High Speed Servos with an ESP32 dev-board. Initial development release
More info
```
Using a Servo lib

2. Wiring

Wire connection: Power (Red) | GND (Brown) | Signal (Orange)

5V GND GPIO 13
Using a Servo lib

3. Coding

```cpp
#include <ESP32Servo.h>
Servo myservo;

int pos = 0;
int servoPin = 13;

void setup() {
  myservo.attach(servoPin, 500, 2600); // attaches the servo on pin 13 to the servo object
  // different servos may require different min/max settings
  // for an accurate 0 to 180 sweep
}

void loop() {
  for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
    myservo.write(pos); // tell servo to go to position in variable 'pos'
    delay(15); // waits 15ms for the servo to reach the position
  }
  for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
    myservo.write(pos); // tell servo to go to position in variable 'pos'
    delay(15); // waits 15ms for the servo to reach the position
  }
}
```
Pulse Width Modulation (PWM)

Can you control the servo motor without using Lib but just PWM?
Hint:

For our servo motor:

- Pulse width: 20ms
- 0.5ms → 0 degree
- 2.6ms → 180 degree

Supporting functions you might need:

map(x, fromA, toA, fromB, toB);

delayMicroseconds(x);
```c
#include <ESP32Servo.h>

Servo myservo;

int pos = 0;
int servoPin = 13;

void setup() {
    myservo.attach(servoPin, 500, 2600); // attaches the servo on pin 13 to the servo object
    // different servos may require different min/max settings
    // for an accurate 0 to 180 sweep
}

void loop() {
    for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
        // in steps of 1 degree
        myservo.write(pos); // tell servo to go to position in variable 'pos'
        delay(15); // waits 15ms for the servo to reach the position
    }

    for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
        myservo.write(pos); // tell servo to go to position in variable 'pos'
        delay(15); // waits 15ms for the servo to reach the position
    }
}
```
int pos = 0;
int servoPin = 13;

void setup() {
 pinMode(servoPin, OUTPUT);
}

void loop() {
 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
 // in steps of 1 degree
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
 angle(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}
```c
int pos = 0;
int servoPin = 13;

void setup() {
  pinMode(servoPin, OUTPUT);
}

void loop() {
  for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
    angle(pos); // tell servo to go to position in variable 'pos'
    delay(15); // waits 15ms for the servo to reach the position
  }
  for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
    angle(pos); // tell servo to go to position in variable 'pos'
    delay(15); // waits 15ms for the servo to reach the position
  }
}

void angle (int a)
{
}

```

Supporting functions you might need:

Map(x, fromA, toA, fromB, toB);

delayMicroseconds(x);

```
```
Supporting functions you might need:

Map(x, fromA, toA, fromB, toB);
delayMicroseconds(x);

```c
void angle (int a)
{
    int highTime = map(a, 0, 180, 500, 2600);
    int delayTime = 20000 - highTime;

    digitalWrite(servopin, HIGH);
    delayMicroseconds(highTime);
    digitalWrite(servopin, LOW);
    delayMicroseconds(delayTime);
}
```
Ultrasonic Sensor HC – SR04
The time between the transmission and reception of the signal allows us to calculate the distance to an object. This is possible because we know the sound’s velocity in the air.
VCC: +5VDC
Trig: Trigger (OUTPUT)
Echo: Echo (INPUT)
GND: GND
Arduino has library for it, but Can you do it without library?

Hint:

a. The sensor is triggered by a HIGH pulse of 10 or more microseconds.

b. To read the sensing signal: a HIGH pulse whose duration is the time (in microseconds) from the sending of the ping to the reception of its echo off of an object.

Google: pulseIn()
VCC: +5VDC
Trig : Trigger (OUTPUT)
Echo: Echo (INPUT)
GND: GND

```cpp
int dist()
{
    long duration, distance = -1;
    digitalWrite(trigPin, HIGH);
    delayMicroseconds(10);
    digitalWrite(trigPin, LOW);

    duration = pulseIn(echoPin, HIGH);
    distance = (duration/2) * 0.0343;

    if(distance >= 20)
    {
        Serial.println("Out of range");
    }
    else
    {
        Serial.print(distance);
        Serial.println(" cm");
    }
    return distance;
}
```
Assignment:

Make a simple radar with the servo motor and the ultrasonic sensor. Code should not use the servo library.

You can use duct tape/hot glue/rubber band/screws from the sandbox to ensure the ultrasonic sensor is firmly attached to the servo motor.

Submission:
Code + Video

In the video, please put some obstacles in front of your radar and show the distance reading changes from the serial port.

Optional: write a GUI with processing. You will get up to 5 bonus points in Assignment 4 for the GUI processing program.
Radar using Processing 3