ESP32 (38Pin version)

- 18 Analog-to-Digital Converter (ADC) channels
- 3 SPI interfaces
- 3 UART interfaces
- 2 I2C interfaces
- 16 PWM output channels
- 2 Digital-to-Analog Converters (DAC)
- 2 I2S interfaces
- 10 Capacitive sensing GPIO’s
are the LEDs connected with each other?
Now?
Now?
Now?
3 options to power up ESP32.

1. Directly via micro-USB port.

2. Unregulated power to GND and 5V pins (Between 5 to 12 v)

3. Regulated power to GND and 3.3V pins (ONLY 3.3v!)

Always only power the microcontroller with one option
GPIO (General Purpose IO) for both digital input and output

Always refer to the pin layout
Digital Output – Blink an LED
Digital Output

Set the logic value of a pin
- **LOW** (0V) or **HIGH** (3.3V)

Arduino functions
- `pinMode(pin, OUTPUT)` to set the pin direction
 Often in the `setup()` function
- `digitalWrite(pin, value)` to write the current value of a pin

Limitations
- Only 0 or 3.3 V with limited current;
Blink the built-in LED

// constants definition
const int ledPin = 2; // Default LED is connected to GPIO 2
// The setup() method runs once, when the sketch starts
void setup() {
 // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT);
}
// the loop() method runs over and over again,
// as long as the Arduino has power
void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
delay(5000); // wait for 5 second
digitalWrite(ledPin, LOW); // set the LED off
delay(5000); // wait for 5 second
}
Select Board: -> esp32 -> NodeMCU-32S

Hit Upload

On the ESP32,
Press and hold the BOOT button until you see the code starts uploading
Practice: Light up the RED Led
long leg

short leg
Blink an external LED

// constants definition
const int ledPin = 23; // Default LED is connected to GPIO 23
// The setup() method runs once, when the sketch starts
void setup() {
 // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT);
}

// the loop() method runs over and over again,
// as long as the Arduino has power
void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
delay(5000); // wait for 5 second
digitalWrite(ledPin, LOW); // set the LED off
delay(5000); // wait for 5 second
}
Serial Communication – talk to PC
Serial Communication

Setup
– `Serial.begin(<baud_speed>)/9600`

Receiving information
– Test is data is available
 `Serial.available()`
– Read one byte
 `Serial.read()`

Sending information
– Raw data transfer
 `Serial.write(val)` or `Serial.write(buf, len)`

Other commands -> https://www.arduino.cc/reference/en
– Formatted output
 `Serial.print(x,{BIN,OCT,DEC,HEX})`
– Read formatted data
 `Serial.parseFloat()
 Serial.parseInt()`
Echo program

// setup performs initializations
void setup()
{
 // initialize the serial port setting its speed to 9600 Baud:
 Serial.begin(9600);
}

// the loop() method runs over and over again,
// as long as the Arduino has power
void loop()
{
 // Temporary buffer
 byte incoming_byte;
 // check if something is pending
 if (Serial.available() > 0)
 {
 // read the pending byte;
 incoming_byte = Serial.read();
 // Sending it back;
 Serial.write(incoming_byte);
 }
}
Assignment

Morse code
– Input: 3451 from the Serial Terminal Monitor
– Output: Blink the LED accordingly

For this assignment:
A dot is 100ms long
A dash is equal to 3 dots
A space between parts of the same letter is equal to one dot
The space between two letters is equal to three dots

International Morse code

Submission:
Unlisted youtube video link for the blinking LED
Upload the Arduino code
Pulse Width Modulation (PWM)
analogWrite() is on a scale of 0 - 255

Now modify your program to

blink the LED with 100% light intensity when type ‘1’ from the PC

turn it off when type ‘0’

light up with 50% light intensity when type ‘2’