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Figure 1: The VisTorch. The devices enables accessing situated visualizations by pointing a tracked projector at a physical

surface, similar to shining a flashlight in a dark room. (A) Our implementation of the VisTorch device. (B) Using the VisTorch to

uncover charts embedded into a situated dashboard in the world by projecting them onto surfaces tagged with fiducial markers.

ABSTRACT

Spatial data is best analyzed in situ, but existing mixed reality tech-
nologies can be bulky, expensive, or unsuitable for collaboration.
We present VisTorch: a handheld device for projected situated
analytics consisting of a pico-projector, a multi-spectrum camera,
and a touch surface. VisTorch enables viewing charts situated in
physical space by simply pointing the device at a surface to reveal
visualizations in that location. We evaluated the approach using
both a user study and an expert review. In the former, we asked 20
participants to first organize charts in space and then refer to these
charts to answer questions. We observed three spatial and one tem-
poral pattern in participant analyses. In the latter, four experts—a
museum designer, a statistical software developer, a theater stage
designer, and an environmental educator—utilized VisTorch to de-
rive practical usage scenarios. Results from our study showcase the
utility of situated visualizations for memory and recall.
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1 INTRODUCTION

A fundamental premise of ubiquitous [17], situated [18], and immer-
sive [35] analytics is the presentation of data in situ; i.e., integrating
visual representations of data in the real world. There are many
benefits to this approach [16]: (1) it increases the display space from
a small set of monitors to potentially the entire area surrounding a
user; (2) it supports situated action [52] as well as distributed [24]
and embodied cognition [48] central to human reasoning; and (3) it
facilitates multiple people working together in the same physical
space [25]. Furthermore, in situations when the data has a connec-
tion to the user’s physical location, it also enables embedding the
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data in a location relevant to the data [58], such as temperature
near a weather station, a time schedule at a bus stop, or electric-
ity consumption on a refrigerator. However, implementing such
ubiquitous displays are a non-trivial technical challenge, with each
solution having its own drawbacks. For example, fixed displays are
static, whereas mobile devices are typically limited in size, thus
limiting the display area and the potential for data embedding.
Augmented Reality (AR) using head-mounted displays is nearly
ideal for the purpose, but such devices are costly, cumbersome, and
not yet widely available. Even handheld AR [4], which is trivial
using current mobile devices, is troublesome because the imagery
is shown on a personal screen, making establishing deixis and
common ground between collaborators awkward.

We present VisTorch (Fig. 1), a custom-built handheld device
combining a laser pico-projector [13] with a camera and trackpad
input (Figure 1). VisTorch lets a user to shine the projector at any
surface in a room to reveal any situated visualization located on
that surface. The onboard camera tracks fiducial markers placed on
the surface and calculates the projector’s orientation, allowing the
projected content to be corrected to avoid distortion due to skewed
perspective. Since VisTorch requires physical projection surfaces,
visualization components cannot be placed in mid-air, which would
not have been a restriction if the technology had been built using
Augmented Reality. The technique also requires an explicit action
to reveal content rather than merely looking, as is the case with a
head-mounted AR device. However, in exchange VisTorch does not
require wearing a bulky (and costly) HMD, and the physical action
of pointing the projector to reveal data is akin to shining a flashlight
in a darkened room, a peephole interaction [61] familiar to many.
Furthermore, the projected image is visible by all participants co-
located in the physical space, facilitating collaboration.

We validated VisTorch using both a user study and an expert
review. The former user study involved 20 participants who used
the device to author and then access situated visualizations for
reading dynamic data. The study was organized into three phases:
(1) participants were first asked to organize charts in 3D space;
then (2) they were given a sequence of quick lookup tasks requiring
them to refer to different charts; and finally (3) they were asked to
give an informal presentation of the dataset to the experimenter,
acting as a collaborator. The latter expert review engaged four
experts in a think-aloud protocol while using VisTorch for an in-
depth review involving their professional expertise: theater stage
production, statistical data analysis, environmental education, and
museum planning. Findings from both forms of validation showcase
people’s intelligent use of space [30] for data analysis and support
our hypothesis that handheld projection for situated visualization
can be a useful approach to data analysis in mobile settings.

2 BACKGROUND

Data is increasingly being integrated into our surrounding world
since the early days of ubiquitous computing [56]. Despite this, it is
only recently that data analytics and sensemaking has become an
anytime and anywhere activity [16]. Here we review the literature
on such ubiquitous, immersive, and situated analytics and then
discuss specific topics within visualization dashboards, ubiquitous
display environments, and handheld projectors.

2.1 Ubiquitous/Immersive/Situated Analytics

In 2013, Elmqvist and Irani proposed the idea of ubiquitous analytics
(UA) [17] that would apply ideas from ubiquitous computing to
data visualization. The original concept was primarily targeted for
mobile devices and physical displays and tabletops [29], but the
idea was rapidly extended to mixed and augmented reality [41].
Immersive analytics (IA) [9, 35] is explicitly based on such immersive
technologies. Situated analytics (SA) [18, 49, 54] is a subset of UA/IA
that concerns data that has some physical referent [58] to the real-
world location where it is displayed. Willett et al. [58] take this
concept further by highlighting representations of situated data
that are embedded into the real world.

Of course, the field of augmented reality has been visualizing data
integrated into the physical world for a long time (e.g. [2, 19, 22, 57]).
However, most of these representations were restricted to labels,
navigational cues (e.g. arrows and distances), and visual highlight-
ing (e.g., outlining a part to be replaced or a hatch to be opened).
It is only recently that people are starting to integrate full-fledged
situated [6] and ubiquitous visualization [55] as well as situated
analytics [49] in AR. Several toolkits have been proposed for this
purpose, including DXR [51], which uses a grammar-based specifi-
cation language, and IATK [11], which provides several specialized
Unity components for immersive and situated analytics applications.
However, Unity—common for both of these toolkits—is proprietary
software managed by a single vendor. Instead, VRIA [7] suggests
the use of open web-based technologies for UA/IA; this is also our
approach here. Furthermore, the VisTorch device in our work can
be seen as having flavors of all three types of analytics; we provide
access to ubiquitous visualizations (UA) in an immersive manner
(IA), albeit restricted to surfaces in the user’s environment (i.e., not
mid-air displays). Furthermore, the mobile form factor means that
the device can be used to present situated data (SA).

2.2 Dashboards and Memory

Visualization dashboards have quickly become a prolific form of
visualization inmany disciplines [44]. Amajor benefit of dashboards
is that they enable the user to rely on spatial [50] and muscle
memory [33] to refer to the dashboard’s constituent parts.

This idea of building on spatial (and muscle) memory has been
shown to be a powerful way to organize information; for example,
Scarr et al. [46] discuss how spatial memory can become an organiz-
ing principle in computer interfaces. The idea is particularly pow-
erful for visual representations, such as in the Data Mountain [42],
where bookmarks are organized in a 3D (or 2.5D) terrain. Wright
et al. [60] report on intelligence analysts using physical space to
arrange data, and Andrews and North [1] famously showed how
ample display space can be used to facilitate in-depth analysis. In
particular, embodied human-data interaction [15] leverages spatial
memory and embodiment for interacting with visualization. Physi-
cal data arrangements have been advocated as one of the strengths
of immersive environments; however, Liu et al. [32] recently showed
that a truly immersive wrap-around view organization is not bene-
ficial for recall and user preference over flat organizations, and that
a semi-circular layout may be the best compromise.
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2.3 Ubiquitous Displays

If we could make every surface in every room a display, ubiquitous
visualization would be trivial. Unfortunately, things are rarely this
simple. The futuristic Office of the Future [40] from 1998 was ahead
of its time. Using the notion of spatially aware displays, a “sea of
cameras,” and ubiquitous projectors, the goal was essentially to
meld a CAVE with a regular office to turn virtually any surface into
a display. Amore recent example with the same goal is theMicrosoft
RoomAlive project [28]. Similarly, the Everywhere Displays Pro-
jector [39] combines a static projector with a computer-controlled
rotating mirror to project imagery on any surface in a room. How-
ever, projectors have their own challenges—see below—and are not
yet sufficiently ubiquitous to make every surface a display (and may
never be). Several projector-based and screen-based approaches
have been proposed since, but challenges such as coordination,
interaction, performance, and interfacing remain [20].

One of the more obvious problems with large-scale multi-display
environments is that the user’s view of different surfaces will de-
pend on their physical position, which can affect the legibility of
displays. Several approaches have been proposed to correct for the
user’s dynamic perspective. The Perspective Cursor [38] adapts
the mapping from motor space to display space depending on the
user’s location. In E-conic [37], this idea is taken further to correct
not just the cursor but the windows and graphical elements in a
display environment based on the user’s dynamic position in the
room. Finally, the Ubiquitous Cursor [36] uses a projector and a
hemispheric mirror to project a low-resolution cursor anywhere in
a physical space, correcting distortion based on room dimensions.

2.4 Projector-based Displays and Interaction

Projectors have now been miniaturized to the point where they can
be integrated into handheld devices. Dachselt et al. [13] examine this
new generation of highly mobile pico-projectors and outline both
existing work as well as a future research agenda. Similarly, Rukzio
et al. [43] survey possible models for the use of pico-projectors to
turn the world into a canvas for pervasive computer imagery.

Some of the early work in this space conducted design explo-
rations before the technology even existed. Blaskó [5] simulated
a wrist-worn projector display and propose several interaction
techniques for its use. Hotaru [53] (“firefly”) discusses the use of a
paired camera to enable touch interaction on the projected surface.
Our approach in this paper couples a pico-projector with a camera
to detect spatial features, enabling the projected view to change
dynamically based on what part of the world is seen by the camera.

Finally, most closely related to our work is HideOut [59], which
uses handheld projectors to display digital content on real-world
objects using infrared fiducial marker tracked by a camera. Com-
pared to HideOut, our focus in this paper is exclusively on the use of
such handheld projection for authoring and manipulating situated
visualizations, and in our findings of how people arrange data in
space to facilitate analysis [1, 30]. The AR Magic Lantern [23] is
based on a similar handheld display unit combining SLAM-tracking
using an Apple iPhone and a pico projector, but its focus is not
specifically on visual data analysis.

3 OVERVIEW: SITUATED VISUALIZATION

DISPLAY PLATFORMS

A situated visualization [6] is a visual data representation that is
rendered in a physical location. Sometimes this is useful merely for
the purpose of using the world as a canvas for non-situated tasks,
such as writing email, editing a document, or checking social media;
sometimes the tasks are location-dependent, such as navigating,
looking up reviews about a restaurant, or analyzing the traffic
patterns in a busy intersection. There are several display platforms
that can help realize this kind of situated data representations, each
with their own strengths (+) and weaknesses (−):

• � External screens: Fixed screens can be used to display
visualizations in the world.

• IMobile devices: Data can be shown on a mobile device
based on the device’s location [31].

• Virtual Reality (HMD): Virtual Reality head-mounted
displays render data in immersive 3D space [12].

• Augmented Reality (Handheld): Data embedded in a
camera view on a handheld mobile device [4].

• Augmented Reality (HMD):Augmented Reality HMDs
embed digital imagery on top of the real world [10].

• Å Projectors (Fixed):Multiple fixed projectors turning a
physical space into a display environment [28].

• Å Projectors (Handheld): Mobile pico-projectors render-
ing data displays on flat surfaces [13, 23, 43, 47, 59].

Table 1 presents a classification of these display platforms based
on their characteristics.We note that each technology has its strengths
and weaknesses. In particular, HMD-based Augmented Reality is
clearly the best platform for delivering situated visualization, but
is still not widely available (at least partly due to high cost). This
is exacerbated by the fact that collaborative data analysis, a key
mechanism for many real-world data visualization tools [25], would
require each analyst to have their own HMD in order to participate.

In this paper, we choose to focus on handheld projectors as an
alternative technology for situated visualization. Of course, pico-
projectors powered by mobile devices have their share of weak-
nesses: they require a projection surface, which means that mid-air
immersive displays are impossible, and they also tend to rely on
touch interaction on the mobile device itself. On the other hand,
projectors are relatively inexpensive and they project a display
that can be seen by all participants. Furthermore, a “flashlight”-like
peephole interaction [61] is familiar to many people.

4 VISTORCH: SITUATED DATA USING

PICO-PROJECTORS

The VisTorch is a portable handheld projected ubiquitous analytics
system that enables embedding data visualizations in physical space.
It is a camera-projector system that reads fiducial markers placed
in the environment and projects a perspective correct display on
the surface. This provides a hand-controlled peephole interaction
with data visualizations in physical space. To harness the embodied
nature of the device, the interactions are based on deictic gestures.
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Platform Cost Supply World Sharing Mobility Embedding

� External screens medium widespread porthole shared fixed none
I Mobile devices medium widespread porthole personal mobile none

Virtual Reality (HMD) low common integrated personal room none
Augmented Reality (handheld) medium widespread porthole personal mobile none
Augmented Reality (HMD) high rare integrated personal mobile embedded

Å Projectors (fixed) medium rare integrated shared fixed surfaces
Å Projectors (handheld) medium rare integrated shared mobile surfaces

Table 1: Display platforms for situated visualization.Handheld projectors, the focus of this work, are still not widely

used, but have many strengths for situated visualization: they facilitate collaboration and can embed displays on physical

surfaces at a low cost.
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Figure 2: Anatomy of the VisTorch. (A) Close up view of

the VisTorch. (B) Trackpad for interaction. (C) Camera for

reading ArUCo markers. (D) Projector to display contents.

(E) Using VisTorch to uncover data in the physical space. (F)

VisTorch showing situated data about a Bluetooth speaker.

4.1 Calibration, Tracking, and Rendering

We use ArUco markers [21] placed on flat surfaces in the environ-
ment to enable tracking the position and orientation of the device.
While it is possible to use infrared ink to make markers invisible
(e.g. [14]), our current implementation is based on markers visible
to the naked eye.

Starting to use VisTorch in a physical marker requires a quick
calibration phase, where the user pans the camera around to show
all of the available markers. The device will then build an internal

3D representation of the physical space. Adding new markers to
expand the display space is trivial and calibration is fast.

Whenever the camera in the VisTorch sees a marker, it deter-
mines the position and orientation of the device in relation to the
marker. If no marker is visible, the device emits a discrete blue
pulsing pattern to signify that it is not currently tracking. Once
the 3D position of the device is known, we calculate a perspective
transform to apply to displayed imagery. This makes it possible to
render a distortion-free view of any data visualizations in that part
of the space even if the device is held oblique to the surface.

Small movements induced due to unstable handmovement causes
fast transformations in the image, making displays jittery and dif-
ficult to read. To avoid this, we employ a moving averages based
smoothing technique to stabilize the image. Although this makes
the display readable, it does yield some latency in responsiveness.

4.2 Interaction

The key VisTorch functionality is to enable placing, organizing, and
viewing visualizations in space (Fig. 2 and 3). A trackpad on the
device facilitates interaction with displayed information.

A B C

D E

Figure 3: Interactions with VisTorch. (A) Translation: Vi-

sualizations are pinned to surfaces. (B) Perspective: Oblique

projection corrects display perspective. (C) Scale: Multiple

visualizations show overview. (D) & (E) Folder view and Place-

ment View screenshot.
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% Translation: The projected contents undergo a trans-
lation transform such that they look pinned to a specific
location in space. This is analogous to how objects in dark-
ness become visible when illuminated by a flashlight.
&Scaling: When the VisTorch is moved away from a pro-
jection surface while still pointed towards a marker, the
projected display holds its size. Thus the scale of the dis-
played visualizations is held constant. This functionality is
inactive when a chart is in placement view, allowing the user
to intuitively control its size by moving the device closer or
further away from the surface. When the chart is placed, its
scale is saved. This embodied interaction makes it natural to
control not just the placement but also the size of a chart.
� User interface: The device projects two views that can
be toggled between using a button: a folder view with a list
of visualizations available to be placed in the environment
and a placement view that holds all the visualizations that
are placed around a certain marker. When pointed to a sur-
face in the room that has a marker, the device opens up the
folder view with the list of all the visualizations available
for placement. The placement view has empty placeholders
for holding visualizations drawn from the folder view. A
visualization can be pinned to the surface by clicking the
place button in the placement view, and can be deleted from
the environment with a delete button. Multiple instances of a
visualization can be placed in the environment; the number
of instances placed is reflected in the folder view.
WInteracting with visualizations: Since our VisTorch soft-
ware is browser-based, the visualizations are standard HTML
components. This makes it possible to use the trackpad on
the VisTorch to interact directly with a visualization cur-
rently centered in the device as if using a mouse in a standard
browser window.

4.3 Hardware Design

There are three primary components to the VisTorch hardware:
a laser projector for displaying visual contents, a camera to read
ArUco markers, and a trackpad to facilitate interaction (Fig. 2).

Å Projector:We use a Nebra AnyBeam laser pico-projector.
The projector is focus-free as it uses MEMS based laser scan-
ning technology to display images. We chose this projector
because it is extremely portable (133g and measuring 103mm
× 60mm × 19mm), is fanless, and offers a plug in HDMI com-
patibility with 720p/60Hz resolution at 22 ANSI Lumens.
� Camera: Logitech C720 HD webcam.
W Trackpad: Adafruit mini panel mount USB trackpad with
trackpad surface dimensions of 60mm × 45mm.

We used off-the-shelf T-slot aluminium extrusions from Maker-
Beam to design the frame of the VisTorch, and custom-made laser-
cut acrylic fixtures to attach the components together. The design
has a physical separation between the camera and the projector to
ensure the projected contents do not interfere with the recognition
and tracking of the the ArUCo markers in the environment. This
avoids any errors in reading the fiducial markers by the camera
due to an overlap of the projected contents on the marker when
projected from about 3 feet from the surface. An alternate design

would combine camera and projector and use a frame sync. The
camera and the projector are vertically aligned so that the center
of the camera and the projector are in line.

The current VisTorch device software runs on a Dell XPS15
Laptop that has an Intel Core i7-7700HQ CPU@2.80GHz processor
and 16 GB RAM. The device is connected to the laptop through an
extension cable (about 4.5m long), making it easy for the device
to be moved around a room while having the laptop stationary in
one corner of the room. We also experimented with an on-device
computational unit, but opted for an external computer for our
research prototype.

The overall cost of the VisTorch—not counting the laptop—is less
than $400, with the projector being the largest expense. Adding on-
board computing would still yield a cost well below $500, putting
the device at significantly lower cost than current-generation AR
HMDs ($3,500 for a Microsoft HoloLens 2 and an Apple Vision Pro).

4.4 Software Architecture

The user interface of the VisTorch system is rendered in the browser
and is built with standard web technologies—HTML, CSS, and
JavaScript. The system uses a Python server with Flask to perform
image processing through OpenCV.1

ÔImage processing: Marker detection is done on the
server. We use OpenCV’s ArUco library to detect the pres-
ence of markers in the environment. When a marker is
detected on a surface, we compute a reverse perspective
transform to make the projected image on the surface look
perspective correct from the reference frame of the device.
We use socket communication to continuously exchange
a stream of data between the server and the client. To re-
move any sudden changes to the projected display caused by
abrupt hand movements, we use a moving averages smooth-
ing algorithm in our image processing pipeline.
hDisplay Rendering: The UI is rendered in the browser.
The system renders selected elements based on visible mark-
ers through dynamic DOMmanipulation. Once the rendering
is complete for a certain marker, we use CSS to 3D transform
the display pane correct for perspective. We can easily dis-
play information visualizations designed with HTML, CSS,
and JavaScript with this pipeline. This also allows using the
VisTorch for any existing web-based visualization. Our user
study included visualizations created using Highcharts.2

5 USER STUDY

We conducted an experiment to evaluate the user experience of
VisTorch. In our study, we emulate collaborative data analysis and
presentation by having the test facilitator act as the audience and
ask questions about the data. The purpose of our study was to
determine if the affordance of placing visualizations in physical
space helps create deictic metaphors that enhance embodied [48]
and distributed cognition [24].

1https://opencv.org/
2https://www.highcharts.com/

https://opencv.org/
https://www.highcharts.com/
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(a) Participants P1-P10.

# Age Group Degree Expertise

♂ P1 25–30 Postdoc Good
♂ P2 25–30 PhD. student Good
♂ P3 25–30 PhD. student Good
♂ P4 30–35 PhD. student Good
♂ P5 25–30 PhD. student Good
♀ P6 25–30 Masters Good
♀ P7 25–30 Masters student Good
♀ P8 25–30 Masters student Good
♀ P9 25–30 Masters student Good
♀ P10 20–25 Masters student Good

(b) Participants P11-P20.

# Age Group Degree Expertise

♀ P11 20–25 Masters student Good
♂ P12 25–30 Masters student Good
♂ P13 25–30 PhD. student Good
♂ P14 25–30 Masters student Good
♂ P15 30–35 Doctorate Passing
♂ P16 25–30 PhD. student Good
♀ P17 20–25 Masters student Passing
♂ P18 30–35 PhD. student Expert
♂ P19 25–30 Masters student Good
♂ P20 25–30 PhD. student Expert

Table 2: Participant demographics. All participants reported having a good expertise of using data visualizations on a scale

that ranged from no expertise, passing knowledge, good, and expert.

5.1 Apparatus

We use the VisTorch system to conduct our user studies. The study
was conducted in a space that resembled an office setting. ArUco
markers were placed in the space to divide it into 5 surfaces of
interaction that included 3 vertical walls and 2 tabletop surfaces
(Fig. 4). VisTorch was tethered to the laptop by a 15ft extension
chord and could easily be moved around in the space.

We conducted our experiment with the translation (where a vi-
sualization looks pinned to a specific point in physical space) and
overview feature (moving away from the projection surface shows
multiple visualizations placed across different markers) disabled
to minimize cropping artifacts due to our specific hardware im-
plementation. The study involved comparison tasks that needed
multiple visualizations to be displayed together. Keeping the trans-
lation and overview induces cropping of images, which limits the
size of the display area. This is a hardware limitation and can easily
be solved with a higher resolution and a wider throw projector pro-
viding enough room for contents to move around without cropping.
Thus, in the experiment, the display was simply turned off when
no marker was visible.

5.2 Participants

We recruited 20 paid participants (13 identified as ♂ male, 7 as ♀ fe-
male) for our study (see Table 2). The age of the participants ranged
from 21-35 years. Most participants were university students, ex-
cept two who were working professionals. We polled participants
before the experiment about their expertise with data visualizations.
All participants reported their expertise as being good on a scale
that ranged from no experience, passing knowledge, good, and expert.

5.3 Experimental Factors

We involved the following factors in our experiment:

Ã View Cardinality (𝑉 ): The number of visualizations re-
quired to complete a specific task: one (1𝑉 ), two (2𝑉 ), or
three (3𝑉 ). For example, a 2V task would require combining
findings from two separate visualizations to answer, such
as looking up the production year of a specific Bluetooth

speaker model, and then using that information to find com-
parable speakers made that same year.
, Data Type (𝑇 ): The type of data involved: Non-Situated
(𝑁𝑆𝑇 ): abstract data where physical location has no signifi-
cance; and Situated (𝑆𝑇 ): context-specific data placed near
the referent physical object.

5.4 Experimental Design

We used a within-participant factorial design where each partici-
pant participated in trials for all conditions:

3 Ã View Cardinality 𝑉 (1, 2, 3)
× 2 , Data Type 𝑇 (Non-situated, Situated)
× 3 ! repetitions

18 ♀|♂ trials per participant.
The order of conditions was fixed for all participants. Our ra-

tionale for a fixed data type 𝑇 order was to first elicit spatial or-
ganization strategies from participants for abstract data. We were
concerned that starting with situated data would bias these strate-
gies even for non-situated data. This was also why we restricted
participants from changing the spatial organization in the second
phase for non-situated data. For the view cardinality 𝑉 , we chose a
fixed order to have participants work up from simple tasks involv-
ing only a single view to increasingly more challenging ones.

5.5 Metrics and Analysis

The sessions were audio and video recorded. We recorded organiza-
tion layouts in both time and space. The participants were asked to
think aloud during the entire study. The test facilitator also made
notes on how the system was being used in-situ. One researcher an-
alyzed the collected data using an inductive approach. This analysis
was primarily based on the video and audio recordings while refer-
ring to the session notes to study specific highlights. We manually
analyzed the entire audio transcript and summarized the findings.

5.6 Tasks

Our experiment involved two sensemaking tasks: (i) b layout
generation, i.e. placing and arranging visualizations in physical
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space for an initial exploration, and (ii)Û identifying data items
from the created layout. We conducted the experiment in two parts
by data type 𝑇 : situated and non-situated data. For each data type,
a participant had to perform both tasks: layout generation and
identifying data items by number of views involved (𝑉 ). We ensured
that the questions required referring to all visualizations at least
once. All the visualizations were generated with Highcharts.

,Non-situated visualization (𝑁𝑆𝑇 ): Here we used a Nobel
Laureates multidimensional dataset consisting of 10 visual-
izations. This data was abstract and had no natural mapping
to physical space.
bLayout Generation: The participants were asked to go
through a list of visualizations (shown in the folder view)
and organize them in space as desired. The organizational
strategy for the layout was recorded.
ÛIdentifying data items: After the layout generation
was complete, the participants were introduced to the type
of questions they would be answering. The layout they
had created earlier was now frozen and no changes were
allowed. However, they could refer to the layout of visual-
izations any number of times to answer a question. The
questions varied based on the number of views (𝑉 ) needed
answer them. Three sets of questions involving one view
(1𝑉 ), two views (2𝑉 ), and three views (3𝑉 ), respectively,
were asked. Each question was repeated three times.

,Situated visualization (𝑆𝑇 ): Here we created the scenario
of a shopping experience with three Bluetooth speakers on a
desk. Nine visualizations were designed with the data about
the three speakers (3 per speaker) from the manufacturer
and various retail websites. The visualizations were clearly
marked with the name of the speakers they showed the data
about. Our primary goal was to generate qualitative feedback
on the user experience of creating and referring to ad-hoc
physical dashboards.
bLayout Generation: The participants were asked to
go through the list of visualizations and place charts in
the physical space around the speakers as desired.
Û Identifying data items: The participants were asked
to answer questions by the test facilitator that involved
referring to one view (1𝑉 ), two views (2𝑉 ), and three views
(3𝑉 ) (repeated three times). Here the participants were free
to change and make new organizational layouts.

5.7 Procedure

Upon arrival, participants were first screened on their expertise
with data visualization. All participants reported having at least
“good” expertise on the scale of no experience, passing knowledge,
good, and expert. Then the participants were asked to give informed
consent to participate in the study.

After giving their consent, the participant entered the study
room where they were introduced to the study procedure. The test
facilitator then demonstrated the VisTorch system, its components,
and how to use it. The demonstration was made on a sample set of
visualizations where the participant was shown 5 example visual-
izations and was asked to place them on various available display
surfaces in the room. This helped them get familiar with all the
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Figure 4: Study space. A 3D model of study space where the

user studies were conducted. ArUco markers are shown in

red. The number of visualizations (non-situated) placed by

participants is indicated.

basic functionalities of the system such as selecting visualizations,
placing visualizations on a surface, and determining the number of
instances of a visualization placed. The actual study began when
the participant indicated that they were familiar with the system.

The study began with the non-situated data condition where the
participant first explored the list of visualizations and created a lay-
out by arranging them in physical space. However, at this point the
type of questions they would be answering was not yet explained.
The next phase consisted of three sets of questions that could be
answered by referring to one visualization, two visualizations, and
three visualizations, respectively. Before each set of question was
asked, participants were told how many visualizations they would
have to access to answer the questions. Participants were given the
option to change the layout before they answered each set of ques-
tions, but could not make any changes while answering questions.
However, they could refer to their layouts as many times as needed.

The second part of the study consisted of situated visualizations
where the scenario of a shopping experience was enacted. Three
Bluetooth speakers were placed and the participant was given a
list of visualizations about the speakers. The participant started by
organizing the visualizations about each speaker next to it. This
was followed by a session where the test facilitator enacting as a
potential customer asked question about the speakers. Three sets of
questions were asked similar to the previous condition: involving
one view, two views, and three views. Here the participant was free
to make changes to the existing layout or place new charts.

The average time for completion of each of these study condi-
tions was recorded. A typical session lasted between 50-60 minutes.
At the end of both the non-situated and situated phase, partici-
pants were asked to fill a NASA TLX (task load index) assessment.
Participants were compensated with a $10 gift card.

5.8 Results: Overview

Here we give an overview of the results and then dive into the
details by data type. Overall, the average completion time for tasks
across all conditions were 23.81 minutes (S.D. = 4.19). For both
conditions, we collected open-ended qualitative feedback on user
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Figure 5: Spatial organizational strategies. The strate-

gies observed are shown (top) coupled with a snapshot of the

corresponding study sessions (bottom). We observed three

distinct strategies: strict categorical clustering (left), redun-
dant clustering (center), and situated clustering (right). The
green dots show the placement of 1/2/3 visualizations.

experience. We noted the time taken to complete the tasks with
each data type as well collected NASA-TLX assessment. We also
report on the strategies used by the participants as they used a
think-aloud method to complete tasks. We collected organizational
layouts in space for the non-situated data.

5.8.1 Non-situated Data. For the non-situated data condition, we
perform a detailed analysis of how the visualizationswere organized
in space. Then we report on the time taken to complete the task
and show the results of the NASA-TLX assessment.

b Layout generation: Participants authored different lay-
outs in the physical space to get an overview of the data. A
custom-designed heatmap of all the visualizations across all
participants overlaid on the physical space is shown in Fig. 4.
The total number of visualizations placed at each marker
across all participants is shown in yellow circles. The green
pie represents the proportion of all visualizations placed by
surface. We seeWall A andWall B being used the most across
all participants andDesk B the least. When given an option to
change the layout that the participants had generated, none
of the participants opted to make any. All the participants
chose to use the layout that they had generated in the initial
exploration phase.
All participants P1-20 generated clusters of visualization
based on similarities, attributes, or features that they felt to
be of importance. For instance, P1 stated “I arranged the vi-
sualizations by similarity to one another.” Said P2, “I made the
themes and I remember where the themes were,” “This [point-
ing to wall A] was the introductory panel and this [pointing to
desk B] was a geography thing.” P3 said “This [pointing to wall
A] was categorical data and personal information.” And P7
stated “I had mapped the structure in my mind to the physical
world,” while P11 said “The way I arranged it made it easy [to
complete tasks].” However, P12 stated that they did not follow
any specific strategy to arrange all the visualizations and
went through the markers one by one to answer questions.

Â Completion Time: The time taken to complete the non-
situated data condition across the layout generation (arrange-
ment phase) and identifying data items phase (task phase)
(average completion time = 15.88 minutes, S.D. = 3.61) is
shown in Fig. 7. P12 took the longest (23.39 minutes), as they
had no specific strategy for the layout and went through
multiple visualizations to find answers.
X NASA-TLX Assessment: Assessment results for the
participants are shown in Fig. 6. We observe that the mental
demand and effort are rated high. From the feedback, we
inferred that while the sensemaking task required mental
effort, the device made it easier to accomplish it. Participants
noted that the physical demand was rated high because of
the weight of the device; we discuss this issue below.

Figure 6: NASA TLX. NASA TLX assessment for non-situated

and situated conditions for all 20 participants is shown.

Figure 7:Time.The time (min.) taken to complete the arrange-

ment phase (layout generation) and task phase (identifying

data items) across both the non-situated and situated condi-

tions is shown for all 20 participants.

5.8.2 Situated Data. For the situated data condition, we did not
record any layout strategies because the visualizations were tied to
physical artefacts. However, this condition did have comparative
tasks where visualizations (e.g., features of a speaker) had to be
compared to get an overview. In such cases, the participants created
ad-hoc dashboards by putting the (feature) visualizations together
in the vicinity of the physical artefacts (speakers). For instance, all
the speakers were placed on Desk A and participants tended to
create ad-hoc dashboards on either on Wall A or Wall B.

× Qualitative Feedback: We asked the participants about
their experience in enacting a sales person and answering
questions about the products. P1 said that “[it] helps build
mental connection with the product.” P20 said that “it felt very
natural to want to attach the data to the physical artifacts.”
P2 found the scenario interesting and noted that “you can
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see the product and the images[visualizations] together.” P4
and P7 both noted that the device is helpful in shopping
experiences when the customer shares the same view as the
sales person as opposed to looking at a separate screen.
Â Completion Time: The time taken to complete the situ-
ated data condition across the layout generation (arrange-
ment phase) and data identification (task phase) (average
completion time = 7.92 minutes, S.D. = 1.83) is shown in
Fig. 7.
X NASA TLX Assessment: These results are shown in
Fig. 6. Participants mentioned that physical demand was
rated higher because of the weight of the system, which over
time got a little tiring.

5.8.3 Qualitative Experiences. Here we summarize all the experi-
ences and open-ended feedback of all the participants based on the
features of the VisTorch device. We also present the participants’
ideas on how they could use the device.

¬ Deixis in Guided Presentation: We observed that the
participants often used deictic metaphors when presenting
an overview of their layouts to the experiment administrator.
They not only used point and reveal gestures with the Vis-
Torch to direct the viewer’s attention, but also used deictic
words such as there, here, these, and those to refer to charts.
Understanding such deictic metaphors was easy for anyone
co-located in the space, thus making it easy to narrate an
overview of the data. P3 noted how the deictic affordance
of the device would help them create guided presentations,
saying “I would like to place stuff spatially on the walls and
window, and we can see it when I point to that” and “I don’t
have to be there physically, [the audience] could interact with
the flow of information that I have thought of [by following
a pre-defined path in space to discover placed contents].” P13
echoed the idea saying physical movement and spatially dis-
tributed information would help create engaging interaction
with an audience. P5 enjoyed pointing to reveal data: “It was
easy to point in a direction and see a visualization.”
j Spatial Arrangement and Mental Models: All partic-
ipants mentioned the importance of self-authored layouts
of visualizations, which helped memorization. Although the
layouts generated by the participants differed from one an-
other, it was interesting to see participants being accurate
in finding charts while completing tasks. In general, partici-
pants preferred to organize layouts on vertical surfaces as
opposed to horizontal ones. This is probably because it is
relatively inconvenient to aim VisTorch at an angle onto
horizontal surfaces compared to vertical ones. Participants
also preferred to use physical corners, as we see in Fig. 4,
whereWall A andWall B were heavily used. The rationale
may be that corners provide two surfaces to interact with.
We also observed that the participants preferred to use the
surfaces that were away from bright light sources. The low
brightness of the projector is clearly a limiting factor. P1 said
“I like that you can place [visualizations] in your surround-
ings,” and added, “[situated visualizations] help build mental
connection with the product.” Said P2: “I made the themes [of

organizing visualizations in the layout] and I also remem-
ber where the themes were.” They also commented on how
the experience of overlaying digital information on physical
objects helps enhance the experience of making decisions
about the physical products. P7 stated, “As long as I spend
time to organize [visualizations], it’s easy for me to quickly
grab the information.” P14 felt that using space to embody
data helped with recall.
v Authoring Ad-hoc Dashboards with Direct Manip-

ulation: Participants stated that self-authoring visualiza-
tion dashboards gave them freedom in arranging in space,
sometimes even on the fly. Paired with the metaphor of
manipulating visualizations by pointing made the user expe-
rience seamless, as if the charts were physical artifacts. We
speculate that VisTorch facilitates this experience by being
portable and handheld, and by affording overlaying digital
information on physical space as well as direct manipulation
of that information. This helps create a virtually infinite dash-
board that can be overlaid on physical space where objects
of everyday life act as anchors. P2 said, “I did like to make
my own dashboard on the go.” Similarly, P3 said, “I like that I
can place the same visualization multiple times” while talking
about making dashboards to do comparison tasks. Both P9
and P11 stated that they liked the ability to make dashboards
on the fly to answer questions, and P11 added that such a
feature helps make comparative tasks easier. Said P3: “I feel
like I am holding [a visualization] in my hand, taking it and
placing it,” and added, “I can interact with it as if it were a
physical thing and change it on the fly.” They also felt that
the interaction was seamless.

5.9 Results: Spatial Organization Strategies

We observed three broad organizational strategies employed by the
participants in the study.

5.9.1 Strict Categorical Clustering: We observed 70% of the par-
ticipants strictly following a categorical clustering technique, where
they placed one copy of all the visualizations in specific self-authored
clusters. Here the participants made clusters of distinct categories
and preferred to move between these clusters while performing
tasks, such as referring to a visualization or comparing between
two visualizations from different clusters. An example of such a
participant authored layout is shown in Fig. 5. We observed that
participants using this strategy were able to distinctly remember
the position of each cluster and physically moved between clusters
to perform any comparison tasks.

5.9.2 Redundant Clustering: We observed a pattern where 30% of
participants made not only unique categorical clusters, but also
used multiple copies of the same visualization that they believed
were relevant in context. For instance, Fig. 5 shows multiple copies
of the same visualization created by P5 because they believed that
each cluster was unique. We also observed this while analyzing the
open ended feedback, where the participant (P3) said, “I had placed
things by groups and knew exactly where to find the answer” about
creating clusters with multiple views of the same visualization may
help answer question faster.
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5.9.3 Situated Clustering: We noted that all participants prioritized
the immediate vicinity of the artifacts in placing visualizations
that described the artifacts, as shown in Fig. 5. This was observed
while working with the situated condition where the visualizations
described the speakers. The visualizations about the speakers were
aligned with their physical placement.

5.10 Results: Temporal Organization Strategies

Upon analyzing the data we observed that during free exploration
and authoring of layout clusters, participants spent more time com-
pared to when performing tasks. In Fig. 7, we show a comparison
of time spent by the participants in authoring layouts (arrangement
phase) vs. answering questions (task phase) during the task. We
observe that once the participants completed the exploration phase,
the time spent in answering questions was significantly less.

A minor temporal pattern we noted was that, unsurprisingly,
participant recall improved over time as they learned the location
of charts with use. However, this is not an organizational strategy,
so we do not offer it as a finding.

6 EXPERT REVIEW

To complement the user study, which was conducted with a con-
venience population of graduate students, we also performed an
expert review with four professionals drawn from varying fields
with situated data. This study was intended to both yield empirical
data for VisTorch as well as derive realistic and practical usage
scenarios for the device.

6.1 Participants

We conducted a total of 4 reviews with experts from different disci-
plines (E1-E4):

• Expert 1: a creative technologist and educator at the Smith-
sonian Museums who designs AR museum guides.

• Expert 2: a projections-media designer who specializes in
creative system integration, cinematography, analog-digital
hybrid puppetry and immersive performances at a perform-
ing arts center.

• Expert 3: an environmental education coordinator who
works with a school of conservation that fosters environ-
mental knowledge through education programs delivered in
natural settings.

• Expert 4: an economist and information science Ph.D. who
develops statistical software.

These were all working professionals in data-driven fields with
at least 3 years of experience. They were compensated for their
time and labor.

6.2 Procedure

We first introduced VisTorch and all its features (including transla-
tion and scaling) to the experts. We then let them use the device
to explore the Nobel laureates dataset and solve a few tasks. These
tasks were based on the attributes of the dataset that could be an-
swered by referring to one, two, or three visualizations, respectively.
This was done to make sure that they completely understood the

functionality of the device. After this, we asked if they would spec-
ulate on potential use cases for the device in their everyday work
and to demonstrate how it might be used in such settings.

6.3 Results

All experts said that they would use deictic gestures while inter-
acting with data, such as referring to information about an art-
work in museums, set props in a theater, brainstorming on large
whiteboards, and presenting data about environmental impacts of
practices in (metalsmithing) workshops. The affordance of a shared
display of VisTorch between the presenter and their respective
patrons co-located in space facilitates deictic metaphors about the
presented data and any related artifact. The experts said they would
use VisTorch to create a spatial arrangement of visualizations in
context of their respective artifacts for a better understanding of
the group they are presenting to. VisTorch helps establish mental
connections between data and physical artifacts by situating the
data. The experts also said that the ability to manipulate digital
information in physical space and create ad-hoc dashboards would
help compare ideas such as comparing between the underlying
composition principles between two different artworks in muse-
ums, comparing the position of similar theater props on set plots
while arranging sets, contrast ideas between multiple approaches
in a brainstorming, and contrasting the impacts of metalsmithing
practices in a shed.

6.3.1 Spatial Reasoning. Several experts remarked on the use of
VisTorch to support spatial reasoning in situated data. Said E1
on the topic of seeing shapes and patterns in paintings that may
be invisible to the untrained eye: “With a lot of traditional artwork
there are underlying compositional shapes and patterns... For example,
triangles will be used for stability... On top of that you have things
such as implied lines that will guide the viewer... [...] So the viewer’s
eye can be guided and someone that is not experienced looking at art
might not recognize this, at least not consciously.”

Similarly, E2 remarked on spatial arrangements on the theater
stage: “To talk about set walls, I have 16 flats and most of them look
the same. I need to be able to quickly assess with the crew of the
touring house where this flat goes. We have this application and I scan
the back of the flat [set walls], and instead of having entire charts
pasted to the back of flats that will surely get damaged... I see the
[stage plot] drawing and this particular component highlighted in it.”

Finally, E4 speculated that the device would enable in-situ brain-
stormingwhere visualizations can be placed alongside hand-written
ideas/algorithms on the whiteboards/frosted glass.

6.3.2 Engagement and Efficiency. Another common theme was the
use of spatial and situated visualization for increasing the engage-
ment of participants and audience members. Expert E3 noted that
“[VisTorch] shows a little bit more of a dynamic way of showing data...
they (students) will be looking at different parts of the room that will
keep [students] more engaged.” E4 felt that “With printed stacks of
paper notes, you are not looking at a shared artifact right in front of
all of you at the same time, some people have to flip through their stuff
to catch up. Being able to remove something and replace it something
else would speed things along.”
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6.3.3 Collaboration. Finally, all but one participant explicitly noted
the utility of VisTorch for collaboration. E1 said “if a tour guide
was taking a group on tour... You know everyone crowds around the
artwork and so its already being observed by a focus group. The tour
guide could bring up more information projected on to the art, point
out interesting things using (projected) overlays on the art.” E2 had
similar sentiments: “It’s not just me who is seeing [the projected set
plot on the set components], it but also the crew... Because it’s a shared
activity. It promotes a thorough understanding of the design.” And
E4: “Collaborative brainstorming would be how I would use it. I can
see myself doing that...”

7 DISCUSSION

Here we provide our interpretation of the results and discuss how
VisTorch can be generalized across various scenarios.

7.1 Explaining the Results

Our results indicate that VisTorch helps individuals across dis-
ciplines make efficient and intelligent use of physical space—as
previously proposed by Kirsh [30]—to simplify choice (by allowing
users to organize charts in a sequential order for a specific task),
perception (by placing prominent charts at a relevant landmark, like
a speaker), and computation (by duplicating charts as needed). Our
findings are also analogous to organization strategies observed in
large display environments for sensemaking, such as using physical
space to form external memory [1, 26], establishing spatial seman-
tics to describe relationships in large display walls and AR [34], and
using physical navigation to enhance performance [3, 27]. They
also support Calepso et al.’s findings on people’s preferences for
physical referents [8].

It is worth noting that for the non-situated data in our user study,
the physical landmarks in our test environment are convenient
“proxies” used merely as placeholders for visualizations; this means
that the visualizations arewhat Satriadi et al. [45] call “proxsituated.”
For our situated data condition, the visualizations were mostly
(but not always) attached to the physical referents—the Bluetooth
speakers—themselves.

Finally, an interesting observation is that even though VisTorch
employs peephole interaction, our results are comparable to sit-
uations involving large displays and AR where the contents are
always visible. This may be attributed to our participants’ ability
to use physical landmarks in lieu of actual contents to aid recall.
While the dataset used in our study was smaller compared to the re-
lated work, is remains interesting to see that spatial organizational
strategies are consistent across platforms.

7.2 Generalizing the Results

We feel that one of the outcomes of this work is that situated data is
central to many applications. While our 20-participant user study
provided deep insight into spatial organization for data analysis, our
expert review showed the breadth and variety of such tasks. The
review engaged four different professionals from widely disparate
fields—education, statistics, cinematography, stage production, and
museums—who were all readily able to discuss how a device such as
the VisTorch could aid them in their everyday tasks. Just like time
is a part of all data, even if it may not always be explicitly captured,

so is space: not just when but also where the data was collected,
how it spatially relates to other data, and how its constituent parts
are connected. Space is a canvas in more ways than one.

7.3 Limitations and Future Work

While VisTorch has all the affordances needed to author situated
visualization dashboards in the real world, our implementation
has room for improvement. For one thing, participants from our
study felt that the device is heavy. Some participants even put the
device down for a few seconds in between tasks for a break. This
is due to the fact that we used T-slot aluminium frames for the
device framework, which are maker-friendly for quick prototypes
but fairly heavy. The fact that VisTorch must be held at all times not
only means that weight is a factor, but also that one hand is captive
and thus not available for bimanual interaction. Furthermore, while
onboard computation can be integrated into the device in the future,
the current implementation is tethered.

An alternative to the handheld projection enabled by VisTorch
would be the use of fixed projectors and cameras to turn an entire
room into an intelligent display environment, as in the RoomA-
live [28] project. Such environments would enable mixed reality
experiences without tying up one of the user’s hands, for example.
However, the VisTorch has the benefit of being fully mobile—at least
in its future untethered state—and usable anytime and anywhere.

A few participants (P3, P7, P8, and P18) suggested improvements
to VisTorch, such as increasing the resolution of the device and ad-
dressing the occasional cropping of the display when the projector
is held at oblique angles to a surface. This problem can be attributed
to the projector’s low resolution and narrow throw angle. On the
other hand, the current projector does offer other advantages such
as being focus free, low power, lightweight, and extremely portable.
At the time of design, this was the best option available.

We stabilize the image of the display and smooth out any small
movements by employing a stabilization technique based onmoving
averages. This induces a small latency of a few seconds to stabilize
the image after pointing the device. This was pointed out by P3,P6,
P8, P12, and P15. In future work, we will reduce this latency by
parallelizing the stabilization as well as dynamically changing the
window of moving averages based on user actions.

Finally, we envision incorporating an IR camera where the fidu-
cial markers in the environment are painted with IR ink, making
them invisible to the human eye. Alternatively, instead of mark-
ers, we may conceivably use camera-based tracking of real-world
landmarks to virtually place objects in the physical environment.

8 CONCLUSION

Wehave presented VisTorch, a handheld device for projected immer-
sive analytics in physical space. Our work started with an analysis
of the design space of multiple situated visualization display plat-
forms by their strengths and weaknesses. We showed the features of
the system and how it affords flashlight-like interaction overlaying
digital information on physical space. We evaluated these features
in context of analytical sensemaking in an informal user study and
expert reviewing involving four professionals in data-driven pro-
fessions. A generalization of our results shows the utility of the
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device as a projected data display for arranging and analyzing data
representations in physical space.
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