
Printing Arbitrary Meshes with a 5DOF Wireframe Printer

Rundong Wu
Cornell University

Huaishu Peng
Cornell University

François Guimbretière
Cornell University

Steve Marschner
Cornell University

Figure 1: Our method enables surfaces to be printed as 3D wireframes using arbitrary meshes. This enables improved shape approximation
and shape depiction as compared to previous approaches.

Abstract

Traditional 3D printers fabricate objects by depositing material to
build up the model layer by layer. Instead printing only wireframes
can reduce printing time and the cost of material while produc-
ing effective depictions of shape. However, wireframe printing
requires the printer to undergo arbitrary 3D motions, rather than
slice-wise 2D motions, which can lead to collisions with already-
printed parts of the model. Previous work has either limited itself
to restricted meshes that are collision free by construction, or sim-
ply dropped unreachable parts of the model, but in this paper we
present a method to print arbitrary meshes on a 5DOF wireframe
printer. We formalize the collision avoidance problem using a di-
rected graph, and propose an algorithm that finds a locally minimal
set of constraints on the order of edges that guarantees there will
be no collisions. Then a second algorithm orders the edges so that
the printing progresses smoothly. Though meshes do exist that still
cannot be printed, our method prints a wide range of models that
previous methods cannot, and it provides a fundamental enabling
algorithm for future development of wireframe printing.

Keywords: 3D printing, WirePrint, wireframe, meshes

Concepts: •Computing methodologies→Mesh models;

1 Introduction

Affordable 3D printers make it easy for anyone to fabricate com-
plex physical artifacts nowadays. Traditional 3D printers have 3
degrees of freedom (DOF): the printhead can move to any point

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper,, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925966

in space but cannot rotate. To avoid collisions between the print-
head and the print, objects generally must be printed layer by layer.
This means that overhangs must be printed after building some
supporting structures, and some surface features are hard to pro-
duce by only printing from straight above. Using high DOF tools
eliminates these limitations and improves flexibility for fabrication
[Singh 2004; Pan et al. 2014; Lee and Jee 2015].

WirePrint [Mueller et al. 2014] is an emerging technology that espe-
cially benefits from using higher DOF. To print wireframe meshes,
the filament is extruded not layer by layer, but directly in 3D space,
creating each edge in a single stroke. Compared with traditional 3D
printed objects, 3D wire meshes are faster to print and also a good
aid to surface depiction, where the inner structure of models can be
seen and surface features such as curvature can be indicated by the
arrangement of edges.

3DOF WirePrint generates the wireframe of a model by slicing it
horizontally, in order to ensure collision-free printing. This ap-
proach badly constrains the types of meshes that can be printed.
To improve flexibility, recently a 5DOF printer was introduced in
the On-the-Fly Print system [Peng et al. 2016], which modifies a
standard delta 3D printer by adding two rotation axes. With this
machine, the edges can effectively be approached from any direc-
tion in the hemisphere, which opens up the possibility of printing
arbitrary input meshes.

While tool path planning for layerwise 3DOF printing is trivial,
planning for 5DOF is a fundamentally different problem: printing
orientations need to be determined and collision needs to be consid-
ered so that already printed parts do not collide with the extruder.
The planning problem boils down to ordering the edges of the input
mesh into a sequence, and choosing a printing orientation for each
edge. It is typically prone to be constrained by collisions: a naive
ordering of edges often leads the printer to paint itself into a cor-
ner where certain edges cannot be approached, from any direction,
without colliding with what has already been printed. On-the-Fly
Print suffers from this problem: with its fixed printing order, it has
to leave parts of the model unprinted to avoid collisions.

A feasible printing plan must have two properties. Every edge must
be connected to what is already printed—edges cannot be printed in
mid-air. And when printing an edge, the nozzle should not collide
with previously printed parts. Besides these two hard requirements,

http://dx.doi.org/10.1145/2897824.2925966

not all feasible plans are equally desirable, since printing in smooth,
uninterrupted strips leads to better results. In this paper we propose
an algorithm to schedule edges for 5DOF wireframe printing. Our
algorithm has two major parts: generating constraints on the order
of the edges to avoid collisions, and traversing the edges subject to
these constraints.

There are three classes of models that cannot be printed: (a) those
for which no collision-free ordering exists at all; (b) those for which
the only collision-free orderings would require printing edges float-
ing in space; and (c) those for which a solution exists but our
method does not find it. Our method can prove a model to be in
class (a), but cannot distinguish between (b) and (c).

We demonstrate our algorithm by printing triangular, quadrilateral,
and mixed meshes created by a variety of meshing tools. We also
discuss the limitations of what can be printed. Our algorithm is
able to make feasible printing plans for a wide range of surfaces
with complex geometry and topology that cannot be handled by
previous methods. Although our algorithm is specially designed for
wireframe printing, variations of the method can be applied to other
scheduling problems involving collision-constrained automated as-
sembly or high DOF additive manufacturing processes.

2 Related Work

In recent years, considerable attention in computer graphics has
been drawn to research on 3D printing. Quite a few topics have
been studied, such as balancing 3D printed shapes [Prévost et al.
2013], generating articulated models [Bächer et al. 2012; Calı̀ et al.
2012] and controlling elasticity [Schumacher et al. 2015; Panetta
et al. 2015; Pérez et al. 2015], but all use established printing meth-
ods to create the shapes they design. Wang et al. [2013] proposed an
algorithm to generate skin-frame structures that approximate given
3D models in order to save print material. Although they have the
idea of printing wireframes underneath the object’s surface instead
of printing the solid infill, the wire edges are printed layer-wise.

The slicer is the key software element in traditional 3D printing. It
decomposes a 3D digital model into 2D layers and generates tool-
paths and machine instructions accordingly. Several open-source
and commercial slicers are available, such as Slic3r [Slic3r] and
Cura [Cura]. We use a printer originally built for layer-wise Fused
Deposition Modeling (FDM), but our algorithm works fundamen-
tally differently from a slicer.

Mueller et al. [2014] introduced the idea of directly printing mesh
edges in 3D space in their WirePrint system, which proposed to
print wire meshes to give designers a fast preview of 3D models.
They sliced the model with many horizontal planes and fabricated
the model by alternately printing the planar slices and a fixed zigzag
pattern between them. They used 3DOF printers, so the edges could
only be printed from straight above, and their printer could not print
any edge steeper than a certain threshold downward. They consid-
ered this constraint when generating the zigzags, leaving out one
edge in each slice to avoid collision. Thus the limitations of 3DOF
printing led them only to print horizontally sliced wire frames, a
constraint which seriously affects the mesh quality.

In order to print other meshes, a 5DOF printer was introduced by
[Peng et al. 2016]. Their 5DOF machine can rotate the model dur-
ing printing, thereby effectively printing the edges in different di-
rections. In their system, On-the-Fly Print, the mesh is generated
based on the model’s UV coordinates and the edges are ordered ac-
cordingly, alternating between vertical sticks and horizontal lines.
Collision detection is done after mesh generation and edge order-
ing. The printing direction is determined locally by sampling the
hemisphere and searching for collision-free directions. Although

Figure 2: 5DOF Printer

this approach works well for simple meshes generated from UV
maps, it can get stuck when there is no feasible direction for certain
edges, due to the fixed edge ordering.

5-axis CNC machines have been widely used in the industry for
manufacturing freeform surfaces [Lasemi et al. 2010]. Tool path
generation and orientation identification are two main issues in
freeform surface machining. Methods based on the configuration
space (the space of parameters for the degrees of freedom) have
been proposed for 5-axis machining. A boundary search algorithm
can be used to find a set of feasible tool configurations, or a path
through the configuration space, to eliminate collision and opti-
mize the tool orientation control [Jun et al. 2003]. While these
methods work for the subtractive machining process, they cannot
be applied directly to find feasible printing plans for additive fab-
rication, in which many parts may only be reachable before other
parts are printed. Slicing and tool path generation for multi-axis ad-
ditive manufacturing has also been studied [Singh 2004; Pan et al.
2014; Lee and Jee 2015]. However, these works used heuristics-
based approaches for scheduling and determining tool orientations,
so feasible planning is not guaranteed. These systems provide ex-
cellent potential applications for our collision avoidance algorithm,
which would enable them to fabricate complex geometry for which
finding a collision-free plan is non-trivial.

Many methods have been proposed to compute high quality trian-
gular or quadrangular meshes, and the motivation of this work is
to fabricate such meshes, benefiting from their ability to represent
shapes well with few polygons. We refer readers interested in mesh-
ing algorithms to [Botsch et al. 2006] and [Bommes et al. 2013]
for surveys of triangle and quadrilateral meshing methods. Many
of the quadrilateral meshing algorithms are field guided methods
[Dong et al. 2005; Kälberer et al. 2007; Bommes et al. 2009], in
which a cross field is generated over the surface to specify the ori-
entations and sizes of the quadrilateral elements. Many examples
in this paper are created using Instant Field-aligned Meshes [Jakob
et al. 2015].

3 Overview

Our goal is to print the wireframe of any mesh for which there ex-
ists a feasible printing order; we call these printable meshes. On
the hardware side, our 5DOF printer (Figure 2) is modified from a
standard delta 3D printer using the same design as in On-the-Fly
Print. In addition to the position of the extruder in 3D Cartesian
space, two extra degrees of freedom are added by including two
rotation axes for the platform. In the model’s frame of reference,
this means the edges can be printed with the extruder approaching

...

Peeling (Sec. 4.2) Constraint Removal (Sec. 4.3) Edge Ordering (Sec. 5)

Figure 3: This figure illustrates the 3 phases of our algorithm. Left: The peeling algorithm recursively peels a set of edges that can be printed
last, which ensures that all edges have collision-free printing orientations when scheduled in the reverse order (Sec. 4.2). The thick red edges
show the next level of edges to be peeled. Middle: After peeling, we remove as many ordering constraints as possible to leave flexibility for
scheduling optimization (Sec. 4.3). The middle panel visualizes the constraints before (left) and after (right) removal. The top row shows
constraints between all pairs of edges. The bottom row shows the constraints associated with a particular edge, where the red lines are
incident collision arcs and blue lines are outgoing collision arcs. Right: The edge ordering algorithm iteratively advances the contour of the
printed model, grouping edges into strips for continuous printing (Sec. 5). Thick edges indicate strip boundaries and grey scale indicates the
order (from white to black).

from any direction in the upper hemisphere; we call this direction
the printing orientation of the edge.

To print a wire mesh on this machine, we need to sequence its edges
and provide five coordinates for each vertex of an edge: three Carte-
sian coordinates of the extruder plus two rotation angles of the plat-
form. Thus on the software side, we need to order the edges and
determine the rotation angles of the platform for each edge, and a
feasible printing plan must obey two types of constraints: support
and collision.

Support constraints require that every edge must be connected to
already printed parts. Collision constraints require that the nozzle
does not collide with printed edges. Either type is readily solved on
its own by polynomial-time algorithms, leading to a choice of two
strategies: enforce the support constraints first, then fix the solution
to avoid collisions; or plan around collisions first, then choose a
support-compatible ordering. In our experience, algorithms consid-
ering support in isolation often paint themselves into corners where
collision-free orientations don’t exist, and heuristics don’t help a lot
to solve this. Since support is easier to satisfy, we choose to enforce
collision constraints first.

This leads to the three phases of our method, illustrated in Figure 3.
We first use an algorithm that peels layers from the model, starting
with the edges to be printed last, constructing a set of constraints on
the ordering which ensure that collision-free printing orientations
will exist for every edge. These constraints are encoded as collision
arcs in a directed graph in which each node represents a mesh edge,
and each collision arc represents a constraint indicating that one
mesh edge must be printed before another.

Second, we reduce that set of constraints by locally removing re-
dundant collision arcs to provide more ordering flexibility.

Finally, we order the edges, building the model back up by adding
strips one at a time, ensuring that every edge is attached to already
printed ones while observing the constraints found in the first phase.
In each iteration, we advance the contour separating printed edges
from unprinted edges by one step, first printing the edges between
the old and new contours, then printing the new contour. In order
to keep the contours smooth, we define a cost on each edge, and we
observe that minimizing the cost of the new contour corresponds to
finding a minimum cut on a dual graph to a portion of the surface.

Symbol Meaning
G Full collision graph
G′ Subgraph
V Set of nodes in collision graph
E Set of arcs in collision graph
E′ Subset of arcs
D A discrete set of all available printing orientations
Rc(e) Orientations associated with arc e
Si
c(v) Orientations causing self-collision when

printing node v from the i-th vertex
Di

o(v) Open orientations of node v
Di

c(v) Closed orientations of node v
Si i-th peeling layer
S S = S0⋃S1⋃ ...

⋃
Sn

R Remaining set of nodes after peeling

Table 1: A table of symbols used in Sec. 4

We explain the algorithms in detail in Sections 4 and 5.

4 Avoiding Collisions

An algorithm that makes only local decisions in scheduling the
edges often gets into a situation where the next edge cannot be
printed in any orientation without the nozzle colliding with already-
printed parts of the model (Figure 4). Further, achieving good re-
sults in practice requires batching edges into contiguous strips, and
greedy strip-building methods run into unprintable edges even more
often. In this section we propose an algorithm that solves this prob-
lem by constructing a partial order on the set of edges such that
any compatible total order will always have a feasible printing ori-
entation for every edge. By using as few constraints as possible,
we leave flexibility for our edge ordering algorithm (Section 5) to
construct good strips while avoiding collisions.

4.1 Problem Formalization

When printing an edge A in a particular orientation, there is a col-
lision if and only if some previously printed edge B overlaps the
volume occupied by the printer mechanism. A collision can be

Figure 4: Naive traversal methods often lead to unprintable edges.
In the top row the edges are ordered by breadth first search. The red
edges have no collision-free orientations so they cannot be printed.
Ordering the edges in ascending order of height (bottom row) does
a better job, but still results in some unprintable edges.

avoided either by printing A before B or by printing A in a different
orientation where B does not interfere. Our formulation centers on
a collision graph that encodes these relationships between printing
order, printing orientation, and collision.

In the full collision graph G(V,E), nodes correspond to mesh
edges and directed arcs correspond to collision constraints:
(va, vb) ∈ E means that printing va after vb causes a collision in
at least one orientation. To avoid ambiguity, we will write “edges”
for edges of the model to be printed (nodes in G), and “arcs” for
edges in G. And we will write “vertices” for vertices of the mesh
and “nodes” for vertices in G. For example, in Figure 5, G is the
full collision graph of a tetrahedron. The six nodes in the graph
correspond to the six edges of the tetrahedron.

Because printability depends on orientation, each arc and node of G
has an associated set of orientations, selected from a finite sampling
D ⊂ S2. Given an arc in the graph, the map Rc : E 7→ (2D \
{∅}) records the set of colliding orientations for the pair of nodes
on this arc: ω ∈ Rc((va, vb)) means that va cannot be printed in
orientation ω after vb has been printed; if ω′ 6∈ Rc((va, vb)) then it
is safe to print va after vb in orientation ω′. For example, in Figure
5, there are three printing orientations. The red sectors of the circle
on an edge indicate the set of orientations that cause collision. For
example, edge b cannot be printed in orientations 2 after edge e is
printed, so there is an edge from b to e and orientation 2 is colored
red on this edge. In practice, we uniformly sample 305 directions
on the upper hemisphere for D, and detect collision for every pair
of edges by checking whether the nozzle geometry intersects one
edge when moving along the other.

It is also possible for an edge to collide with itself while printing
from some orientations; to encode this there are also two maps
S1
c , S

2
c : V 7→ 2D that record the infeasible orientations due to

self-collision: ω ∈ S1
c (v) (resp. S2

c (v)) means it is not safe to
print v in orientation ω when starting from the first (resp. second)
endpoint.

With the constraints of the problem encoded in G, Rc, and Si
c, the

collision avoidance problem can be formalized in terms of choos-
ing a subgraph G′(V,E′ ⊂ E) of the full collision graph, which
represents the particular subset of collision constraints we intend
to follow: (va, vb) ∈ E′ means that we will print va before vb.
G′ needs to have two properties to be a solution: first, it must be
acyclic, because a cyclic graph will have conflicting constraints, in

which two mesh edges must each be printed before the other; and
second, there must be some feasible printing orientation for every
edge. These two properties are in tension: more edges in the sub-
graph put more constraints on the ordering, so we have more guar-
anteed feasible orientations, but the subgraph is also more likely to
be cyclic.

We say that an orientation ω is open in G′ for a node v if the con-
straints in E′ guarantee that v can be safely printed in orientation ω;
otherwise we say ω is closed in G′ for v. It follows from the mean-
ing of Rc and Si

c that in G′(V,E′), the set of open orientations of
a node v is

Di
o(v) =

(⋂
e∈Ev\E′

v

R̄c(e)
)⋂

S̄i
c(v), i = 1, 2 (1)

where Ev and E′v are the outgoing arcs of v in G and G′ respec-
tively; R̄c(e) and S̄i

c(v) are the complements of Rc(e) and Si
c(v)

in D respectively. That is, an orientation of a node v is open if
and only if (a) it does not cause self-collision and (b) the subgraph
requires all nodes that would prevent printing v in this orientation
to be printed after v. For example, in G′3 of Figure 5, orientations
2 and 3 of a are open. Although printing a in these orientations
would collide with e and f , the arcs present in G′3 require e and
f to be printed after a, so printing a in these orientations is safe.
Orientation 1 of a is closed, because printing a in this orientation
collides with d, and d may be printed before a since arc (a, d) is
absent in this subgraph.

As with S1
c and S2

c , D1
o is the set of orientations that are open for

printing v starting from its first endpoint, and D2
o is for starting from

its second endpoint. And the set of closed orientations is Di
c(v) =

D \Di
o(v).

A node v is called open if D1
o(v)∪D2

o(v) 6= ∅. Finally, the goal can
be stated briefly: find an acyclic subgraph G′(V,E′) for which all
nodes are open. We call such a graph a feasible acyclic subgraph.
In Figure 5, G′2, G′3 and G′4 are all feasible acyclic subgraphs. In
the full graph G, all orientations of all nodes are open, but it’s not a
solution because it’s cyclic and we cannot find an order that obeys
all the constraints. In the empty graph G′1, there are no constraints
so we can print the nodes in any order, but it’s not a solution ei-
ther, because nodes a, b and c are closed and not guaranteed to be
collision-free.

4.2 Resolving the Collision Graph

Now we describe our algorithm for finding a feasible acyclic sub-
graph of G by removing and adding back arcs.

The first phase of our algorithm is inspired by the observation that,
for any printable mesh, there must be edges that can be printed after
all the others have been printed. We can print these edges last so
they do not interfere with others. And if we put them at the end
of the sequence, some of the other edges can be printed just before
them. We can do this recursively until all the edges are considered.
The procedure is like peeling an onion and we call it the peeling
algorithm (Algorithm 1).

In each iteration of the peeling, we can either peel all nodes that are
newly opened, or just peel a subset of them. In practice we found
that peeling all newly opened nodes often puts too many constraints
on the order of edges, such that edges have to be printed without
support, see Figure 6. To address this we want to avoid deciding
to print edges far from the printing platform before those near the
platform, so we arrange them to prefer retaining collision arcs that
point away from the platform as measured by traversal distance. To
achieve this, before the peeling we label each node with the length

G G′1 G′2 G′3 G′4

Empty graph (Sec. 4.2) Peeling (Sec. 4.2) Removal (Sec. 4.3) Update (Sec. 5.3)

a

b c d

ef

a

b c d

ef

a

b c d

ef

a

b c d

ef

a

b c d

ef
1

23

tetrahedron

orientations

a
cb

f ed1

23

Figure 5: This figure illustrates the states of the collision graph for a tetrahedron, in various phases of our algorithm. Each node (large
circles) and arc (curves) is annotated with a set of orientations; each sector of the circle represents a printing orientation. For the nodes, red
means closed and white means open. For the arcs, red sectors are orientations that cause collisions. Dashed curves are removed arcs. G:
full collision graph (Sec. 4.1). G′1: empty collision subgraph (Sec. 4.2). G′2: result of peeling (Sec. 4.2). G′3: result of constraint removal
(Sec. 4.3). G′4: updated state after printing order is determined (Sec. 5.3).

Algorithm 1
Label each node with the length of its shortest path from plat-
form.
Remove all arcs in the graph.
Let S0 be the set of nodes that are open and have maximum label.
i← 0.
while (not all nodes are open) && (Si 6= ∅) do

Add back all arcs incident to nodes in Si, except for arcs
from Sj , j ≤ i.

Si+1 ← the set of nodes that are open after adding these arcs
and have the maximum label.

i← i + 1.
end while
n← i.
R← the set of nodes that are not opened by the process above.
if R == ∅ then

We can print in the order of Sn, Sn−1, ..., S0.
Nodes in the same subset Sk can be printed in arbitrary order.

else
We cannot resolve this collision graph.

end if

of the shortest path between the platform and itself. Then at each
step, we only peel the nodes that have the maximum label among
the newly opened ones. This makes the algorithm tend to follow the
reverse traversal order and add a small set of constraints each time,
which reduces the chance of having to print unsupported edges.

A simple example of the peeling process is shown in Figure 5. We
start with the full collision graph G and remove all arcs to get
the empty graph G′1. In G′1, nodes d, e and f are still open, so
S0 = {d, e, f}. Then we add edges incident to the nodes in S0

and get graph G′2. In G′2, nodes a, b and c are also opened, so
S1 = {a, b, c} and R = ∅. The algorithm has found a solution.

It is straightforward to prove by contradiction that the algorithm is
complete, meaning that it will find a feasible acyclic subgraph if one
exists. Suppose that the algorithm fails: there is a feasible acyclic
subgraph, but R 6= ∅ and the algorithm concludes no solution ex-
ists. In the feasible acyclic subgraph, at least one node in R has no
outgoing arcs in R × R, otherwise there are cycles in the graph.
Therefore, this node can be opened by adding only arcs in R × S,
where S = S0⋃S1⋃ ...

⋃
Sn. Since we added all arcs in R× S

in the algorithm, we should have opened this node in R, which is
a contradiction. Therefore, considering collision constraints only,
the peeling algorithm will always find a solution if one exists. And
when the algorithm cannot find a solution, there is no feasible order

level 0 level 5 level 0 level 6 level 0 level 22 level 0 level 32
Peel all nodes Peel nodes with max traversal distance

Figure 6: This figure shows the results of the peeling algorithm. In
the bottom row, half of the models are cut away to show in edges
in the back. The color map indicates the levels of nodes during
the peeling (Si). Note that after peeling all constraints point from
higher to lower numbered Si. The left two columns shows the re-
sults of peeling all newly opened nodes, which results in fewer levels
but a lot of unsupported edges (e.g. the blue edges on the back of the
duck). The right two columns show the results of peeling only the
maximum traversal distance nodes in the newly opened set, which
results in more levels and the constraints are more consistent with
traversal order.

to avoid collision.

Figure 7: The three edges
on the top are cyclically
dependent in the colli-
sion graph, and cannot be
printed in any order.

This proof also gives us some in-
sight into the problem. An in-
feasible set of nodes is one in
which every node in the graph
is closed initially, i.e. S0 = ∅.
That is, not a single edge can be
printed in any orientation, if we
consider interference with all the
other edges. Our proof shows that
this is the only case where no col-
lision free order exists, if we don’t
consider the support constraint, to
be discussed in Section 5. This
usually happens when there are
edges close to each other that form
a cyclically dependent configura-

tion; see the example in Figure 7. This situation can in principle
be resolved by splitting the edges into smaller pieces and printing
them separately, so that the cyclic dependency is broken, though we
have not encountered this problem in practice or implemented this

fix.

4.3 Removing Redundant Constraints

The peeling algorithm gives us a partial order following which we
can sort the edges into a collision-free sequence. However, the peel-
ing algorithm’s goal is simply to find any feasible acyclic subgraph,
and in the process it adds many redundant collision arcs that can
cause unnecessary difficulty in ordering. We can actually remove
many of these constraints: as long as we don’t close any node in
the graph, we still have a feasible acyclic subgraph. So in order to
have more freedom in the ordering phase, we remove the redundant
arcs after the peeling algorithm to find a set of constraints that is as
small as possible.

In the removal process, we go through every node on the graph. For
each node, we iterate through its outgoing arcs, and check whether
removing the arc will close that node. If not, we remove that arc
and close associated orientations. Then we check the next arc. The
order in which the arcs are considered affects the result because it
affects which constraints are left, and an inappropriate remaining
set of constraints causes failure to find a feasible solution (Figure
11). We apply the heuristic of removing arcs first that most conflict
with a simple ordering heuristic: we check and remove the arcs in
an ascending order of the height (distance from the plane of the
platform) of the arc’s ending node.

In Figure 5, after peeling, we remove three arcs and get graph G′3.
Removing these arcs closes one orientation for each of a, b and c,
but creates more flexibility in ordering (e.g. e can be printed before
b). The remaining arcs cannot be removed because removing them
would close nodes.

5 Scheduling Mesh Edges

In this section we explain how we schedule the edges for printing.
In addition to the support and collision constraints, we observed that
edge sequences with certain favorable properties tend to make the
printing process robust and to improve print quality: (1) the edges
should connect back to printed parts as frequently as possible; (2)
long, straight moves that connect several previously printed parts
are favorable.

The slicing based approach of WirePrint and UV map based ap-
proach of On-the-Fly Print are good examples of ordering methods
with these properties. We generalize their ideas to handle arbitrary
input meshes.

For description convenience we assume that the mesh is a manifold,
though the idea can also be applied to non-manifold meshes except
for the refinement in section 5.2. Our edge ordering algorithm starts
with the platform edges, denoted by Er . Then we repeatedly add
edges to the printing sequence until the whole mesh is covered.
In each iteration, we find the printed edges of the faces that are
not completed, which we call the old contour Cold, and we denote
the vertices on Cold by V0. The set of vertices that are separated
from V0 by one unprinted edge is V1. The set of unprinted edges
that connect two vertices in V0 is E0; and those connecting two
vertices in V1 are E2, which forms the new contour Cnew. The set
of unprinted edges between V0 and V1 is E1. After determining
these sets (Figure 8 top), we first print the unconstrained (Section
5.1) edges E∗1 ⊆ E1 and then print the unconstrained edges E∗2 ⊆
E2. (Algorithm 2)

Assuming that the input mesh is a single connected component,
this algorithm can traverse the whole mesh and terminate unless the
collision constraints are not compatible with traversal. When there
are unprinted edges, E0 and E1 cannot be both empty. So as long

Algorithm 2
Print the platform edges Er .
while not all edges are printed do

Find the vertex sets V0 and V1

Find the unprinted edge sets E0, E1 and E2

Print unconstrained edges E∗0 ⊆ E0

Print unconstrained edges E∗1 ⊆ E1

Print unconstrained edges E∗2 ⊆ E2

end while

as E∗0 and E∗1 are not both empty, the algorithm will always find
new edges to print until all edges are printed.

5.1 Integrating Collision Constraints

Now we explain how to consider collision constraints in the order-
ing algorithm to make sure that the ordering does not conflict with
them. Let Ẽ denote the set of unprinted edges. When we attempt to
print an edge e ∈ E0, we need to check whether there is a collision
arc path from Ẽ\E0 to e. If there is, then e should not be printed for
now and has to wait for the next iteration, otherwise e ∈ E∗0 . Simi-
larly, we need to check for a collision arc path from Ẽ \ (E∗0

⋃
E1)

for E1 edges and check for a path from Ẽ \ (E∗0
⋃

E∗1
⋃

E2) for
E2. Collision arcs between edges in the same-subscript E set do
not affect what can be printed in the current iteration, because the
same-subscript edges can be ordered according to these constraints.
An extra supporting constraint needs to be considered for E2 edges.
Since we only print a subset of E1, some edges in E2 may be un-
supported, which should be excluded from E∗2 .

It is possible for the ordering algorithm to fail due to collision con-
straints. But this only happens if the collision constraints are in-
compatible with any traversal order of the mesh. To see this, note
that the ordering algorithm will only get stuck when every edge
in E0

⋃
E1 has collision paths from Ẽ \ (E0

⋃
E1). In this case

the algorithm will proceed until it reaches a state where every un-
printed edge adjacent to the printed part has incident collision paths
from the unprinted edges that are not adjacent to the printed part
(Figure 11). This defines a cut through the mesh that can never be
crossed by any traversal order, since every edge on the cut can only
be printed after the algorithm has crossed the cut. Therefore, if the
ordering algorithm gets stuck, it means that the collision constraints
force us to print some unsupported edges, and there is no feasible
solution to the ordering problem. This does not imply there is no
solution to the full scheduling problem: the collision phase chooses
some feasible acyclic subgraph, but it is possible that there exists a
different such subgraph that would be traversal-compatible.

5.2 Smooth Contours

For better printing quality, we expect the contours to be smooth and
not to fold too much, so we refine algorithm 2 to take special care
when it advances the printed part. We take the edges in E1

⋃
E2 as

the candidate set and find a subset to form a smooth new contour.
With a smooth scalar field, height for example, we let the cost of an
edge be the difference of field values at its two vertices, by mini-
mizing which we can find a contour that follows the isopleth of the
field. We observed that the minimum-cost contour on the mesh cor-
responds to the minimum cut on the dual graph (Figure 8 bottom).
We find the minimum cut on the dual graph and use the correspond-
ing edges as Cnew. The set of vertices on Cnew and not on Cold is
V ′1 . And the set of edges between V0 and V ′1 is E′1. In each itera-
tion we only print the unconstrained edges in E′1, and then those in
Cnew. A special case is when the adjacent edges of a vertex in V1

Nodes of dual graph
Edges of dual graph
Min cut

New contour

Candidate mesh edges
Connected to sink node

Connected to source node

Old contour

V0

V1

E0 Cold
E1
E2

Figure 8: Top: Sets of edges and vertices in Sec. 5. Bottom: Min
cut on the dual graph corresponds to minimum cost contour on the
mesh. To force the contour to advance, we don’t include the edges
on the old contour in the dual graph.

Figure 9: The contours (thicker edges) on an icosphere found by
the ordering algorithm without (left) and with (right) the min cut
strategy.

are all in E1 (e.g. the top of the right sphere in Figure 9). In this
case E2 = ∅ and there is no new contour. When we detect such
cases, we directly print the unconstrained edges in E1.

It is possible that the refined algorithm gets stuck when the all E′1
edges have incident collision arcs from E1\E′1. When this happens
we fall back to the strategy of Algorithm 2.

Figure 9 shows a comparison of the contours on an icosphere found
by our ordering algorithm. With the min cut strategy, the contours
are flattened by taking small advances at certain places.

5.3 Grouping Edges and Selecting Orientations

After figuring out the set of edges in E∗0 , E∗1 and E∗2 , we try to
group the edges in each E∗i into continuous strips. A greedy algo-
rithm is used to find as long as possible paths in each set. We start
from an arbitrary edge, add one of its unprinted adjacent edges in
E∗i and do this repeatedly until no edge can be added. We use the
heuristic to prefer adding an edge that has unprinted adjacent edges
in order to find long paths. Then we repeat to find other strips until
all edges in E∗i are printed. Collision constraints should be con-
sidered here: if an edge has incoming collision arcs from unprinted
edges when we consider adding it, it should not be added for now.

Once we have ordered the edges into strips, we update the printable
orientations of every edge based on the actual printing sequence.
For example in Figure 5, we decide to print the edges in alphabet
order. Only three arcs in the graph violate this order so they are
removed, and the rest are preserved in G′4. Given this subgraph, all
orientations of nodes a − d are open, and orientation 3 of e is also
open since f is actually printed after e.

Then we need to assign each edge a printing orientation from

among the feasible possibilities. To do this, we build a graph with
a node for every pair (v, ω) where v is a edge in the strip and ω is
a feasible orientation for that edge. Every pair of nodes belonging
to two edges adjacent in the printing sequence is connected by an
edge in the graph, labeled with a cost equal to the angle between the
two orientations. We find a shortest path in this graph joining the
first mesh edge to the last, which selects a sequence of orientations
that has the minimum total rotation.

6 Results

We printed a variety of meshes that previous wireframe printing
methods cannot, and show the results in Figure 10. The Klein bottle
is meshed following its parameterization; the coarsest bunny and
the fertility meshes were simplified from dense meshes using an
edge-collapse method; and the other meshes were all created using
Instant Field-aligned Meshes [Jakob et al. 2015].

We printed 3 bunnies with various meshing styles. In the simpli-
fied bunny, several edges on the ears are badly constrained by the
neighbors (Figure 4). Our algorithm finds a collision-free plan for
this mesh. Another two bunnies are printed with regular triangular
and quadrilateral meshing, to show that our method enables printing
nice meshes for better surface depiction.

A quadrilateral fandisk mesh is printed and compared against the re-
sult of a WirePrint-style mesh generated by the Cura slicer software
(Figure 12). The features of the shape are much better preserved in
the quad mesh and WirePrint has a hard time approximating the flat
surface on the top.

The Klein bottle, trefoil knot and fertility model show our method’s
ability to find collision-free printing plans for intersecting surfaces,
complex shape, and complex topology.

The duck is 8 cm tall and takes about 55 minutes to print, with much
of the time spent pausing for the filament to cool. The printing
can be considerably accelerated by using better cooling system, but
improving the hardware is beyond the scope of this paper.

The time to compute the plans is much shorter, and is dominated by
collision sampling time, which depends on the number of sample
points along each edge. We generally take 3 samples per edge,
which takes up to 5 minutes on a modest laptop computer. The rest
of the algorithm completes in less than 20 seconds.

Failure cases: An example where our algorithm fails to find a
traversal is a cube with a blind hole in the top face (Figure 11). After
the peeling and redundant arc removal, there are still collision arcs
pointing from edges in the hole to edges on the top. The traversal
algorithm gets stuck on the top because of these constraints. The
root problem is that the path-length-based ordering heuristic used to
select which collision arcs to keep is inappropriate for this example.
If we rotate model by 90 degrees so that the hole is on the side, the
algorithm finds a feasible plan.

7 Conclusions and Future Work

In this paper we propose an algorithm to generate printing plans for
5DOF wireframe printers given arbitrary input meshes. Our colli-
sion avoidance algorithm finds a locally minimal set of constraints
on the order of edges, by following which the mesh can be printed
without collision. The algorithm constrains the ordering as little
as possible to leave freedom to order the edges in the next phase.
Our edge ordering algorithm is designed to generate a sequence of
edges that will make for smooth progress when printing. A number
of results have shown that our algorithm enables us to print wire
meshes that are infeasible with previous methods.

Figure 10: Printing results. In each pair of rows, the top shows the order of edges, in which the contours are indicated by thicker lines and
order is indicated by gray scale (from white to black). The bottom shows the meshes printed by the 5DOF printer.

Our method is the first to allow wireframe printing of meshes that
are not specially designed for wireframe printing—a fundamental
enabling technology needed for further progress in wireframe print-
ing. The ability to print nearly any mesh opens many possibilities in
moving FDM printing beyond the strictly layer-wise approach, in-
cluding designing wire meshes to have particular mechanical prop-
erties or using wire meshes as scaffolds to print solid surfaces faster
and with less material for a given strength. Moreover, with a differ-
ent traversal approach, our scheme can readily be adapted to non-
surface-like lattice structures.

Limitations and future work: One significant limitation is that
our algorithm can fail to find a plan for some printable meshes
(Figure 11), when the first phase selects collision constraints that
are incompatible with any traversal order. How to find traversal-
compatible constraints remains an open question. Besides, the bot-
tleneck of our algorithm’s computation cost is at sampling colli-
sions for every pair of edges, which is quadratic, so efficiency is an
issue for dense meshes. Although the computational time is much
less than the printing time, one might want to accelerate it in order
to support applications at interactive rate. There is much poten-
tial in speeding up the collision sampling using some hierarchical
structures.

Our collision algorithm finds a small set of constraints on the or-
der of edges, which leaves a lot of flexibility in the ordering. Any
algorithm that traverses the edges can fit in our scheme. Currently
we use height to guide the ordering, which might not be the best
choice for all meshes. One future topic is to explore better ordering
methods for different models, such as trying other scalar fields on
the mesh as guidance.

Improving the hardware is another direction for future work. Cur-
rently our printing is limited by the printer prototype. We used air
cooling for the results, which results in a lot of sagging and a lot of
time spent waiting for the edges to solidify. Atomized spray cooling
can speed up printing and reduce sagging. The printer uses a remote
extruder with a flexible tube to feed filament to the head, which af-
fords relatively inaccurate control over starting and stopping extru-
sion. This results in blobs at vertices when starting extrusion and
strings caused when stopping. These artifacts can be reduced by
improving the extruder and readjusting the extrusion control param-
eters. With better hardware, we could also print longer, straighter
beams and larger objects, which would improve the visual quality
of our results.

level 0 level 16

level 0 level 21

Figure 11: A cube with a hole in the top. The left two columns
show the levels of edges, and the right two show the printing order.
Top row: the ordering algorithm gets stuck because the collision
constraints require the edges on the top face to be printed after the
edges in the hole, but the edges in the hole cannot be printed without
printing at least part of the top first. Bottom row: a feasible plan
can be found if the model is rotated by 90 degrees.

Figure 12: Left: a WirePrint-style mesh of the fandisk model gen-
erated by Cura. The mesh quality suffers due to slicing: shape
features are not preserved, and the top surface is poorly approx-
imated. Right: a quadrilateral mesh printed using our approach,
which depicts the fandisk shape better.

Acknowledgements

This work was made possible by funding from the National Sci-
ence Foundation under grants IIS-1422106, IIS-1513967 and IIS-
1011919, and by generous support from Autodesk Corporation. We
also thank John (Spike) Hughes for his insightful comments and
suggestions.

References

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3.

BOMMES, D., LVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2013. QuadMesh Generation and
Processing: A Survey. Computer Graphics Forum.

BOTSCH, M., PAULY, M., ROSSL, C., BISCHOFF, S., AND
KOBBELT, L. 2006. Geometric modeling based on triangle
meshes. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06.

CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R.,
STEED, A., KAUTZ, J., AND WEYRICH, T. 2012. 3D-printing
of non-assembly, articulated models. ACM Trans. Graph. 31, 6.

CURA. Cura. https://ultimaker.com/en/products/cura-software. Ac-
cessed: 2015-12.

DONG, S., KIRCHER, S., AND GARLAND, M. 2005. Har-
monic functions for quadrilateral remeshing of arbitrary mani-
folds. Computer-Aided Geometric Design 22.

JAKOB, W., TARINI, M., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2015. Instant field-aligned meshes. ACM Trans.
Graph. (Proc. of SIGGRAPH Asia) 34, 6.

JUN, C.-S., CHA, K., AND LEE, Y.-S. 2003. Optimizing tool
orientations for 5-axis machining by configuration-space search
method. Computer-Aided Design 35, 6.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007.
Quadcover-surface parameterization using branched coverings.
In Computer Graphics Forum, vol. 26.

LASEMI, A., XUE, D., AND GU, P. 2010. Recent development
in cnc machining of freeform surfaces: A state-of-the-art review.
Computer-Aided Design 42, 7.

LEE, K., AND JEE, H. 2015. Slicing algorithms for multi-axis 3-d
metal printing of overhangs. Journal of Mechanical Science and
Technology 29, 12, 5139–5144.

MUELLER, S., IM, S., GUREVICH, S., TEIBRICH, A., PFIS-
TERER, L., GUIMBRETIÈRE, F., AND BAUDISCH, P. 2014.
Wireprint: 3D printed previews for fast prototyping. In Proc.
UIST.

PAN, Y., ZHOU, C., CHEN, Y., AND PARTANEN, J. 2014. Multi-
tool and multi-axis computer numerically controlled accumula-
tion for fabricating conformal features on curved sufaces. Jour-
nal of Manufacturing Science and Engineering.

PANETTA, J., ZHOU, Q., MALOMO, L., PIETRONI, N., CIGNONI,
P., AND ZORIN, D. 2015. Elastic textures for additive fabrica-
tion. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4.

PENG, H., WU, R., MARSCHNER, S., AND GUIMBRETIÈRE, F.
2016. On-the-fly print: Incremental printing while modeling.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems.

PÉREZ, J., THOMASZEWSKI, B., COROS, S., BICKEL, B., CAN-
ABAL, J. A., SUMNER, R., AND OTADUY, M. A. 2015. De-
sign and fabrication of flexible rod meshes. ACM Trans. Graph.
(TOG) 34, 4.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make It Stand: Balancing shapes for
3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4.

SCHUMACHER, C., BICKEL, B., RYS, J., MARSCHNER, S.,
DARAIO, C., AND GROSS, M. 2015. Microstructures to control
elasticity in 3D printing. ACM Trans. Graph. 34, 4.

SINGH, P. 2004. A framework for reverse engineering using
feature-based geometry reconstruction and multi-directional lay-
ered manufacturing.

SLIC3R. Slic3r. http://www.slic3r.org/. Accessed: 2015-12.

WANG, W., WANG, T. Y., YANG, Z., LIU, L., TONG, X., TONG,
W., DENG, J., CHEN, F., AND LIU, X. 2013. Cost-effective
printing of 3D objects with skin-frame structures. ACM Trans.
Graph. (Proc. SIGGRAPH Aisa) 32, 5.

https://ultimaker.com/en/products/cura-software
http://www.slic3r.org/

