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Figure 1. MechanoBeat uses (a) different electronics-free harmonic mechanical oscillator designs on everyday objects like (b) a pill bottle to auto-
matically generate different unique mechanical heartbeat signals. At the moments of (b) user-object interaction, MechanoBeat tags generate unique 
mechanical heartbeats which are illustrated in the form of a radargram (c) An ultra-wideband radar array scans the living space and can reliably detect 
the unique mechanical heartbeat in both line-of-sight and non-line-of-sight conditions (e.g., through walls). 

ABSTRACT 
In this paper we present MechanoBeat, a 3D printed mechani-
cal tag that oscillates at a unique frequency upon user interac-
tion. With the help of an ultra-wideband (UWB) radar array, 
MechanoBeat can unobtrusively monitor interactions with 
both stationary and mobile objects. MechanoBeat consists 
of small, scalable, and easy-to-install tags that do not require 
any batteries, silicon chips, or electronic components. Tags 
can be produced using commodity desktop 3D printers with 
cheap materials. We develop an effcient signal processing and 
deep learning method to locate and identify tags using only 
the signals refected from the tag vibrations. MechanoBeat is 
capable of detecting simultaneous interactions with high ac-
curacy, even in noisy environments. We leverage UWB radar 
signals’ high penetration property to sense interactions behind 
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walls in a non-line-of-sight (NLOS) scenario. A number of 
applications using MechanoBeat have been explored and the 
results have been presented in the paper. 

Author Keywords 
Mechanical Oscillator Tag, 3D Printing, Contactless Sensing, 
User-Object Interaction, Ultra-Wideband Radar 

CCS Concepts 
•Human-centered computing → Ubiquitous and mobile 
computing systems and tools; 

INTRODUCTION 
Knowing how and when people interact with their surround-
ings is crucial for constructing dynamic and intelligent en-
vironments. Despite the importance of this problem, there 
still lacks an attainable and simple solution. Current solutions 
often require powered sensors on monitored objects or users 
themselves. Many such systems use batteries, which are costly 
and time consuming to replace. Some powered systems con-
nect to the grid which may save swapping batteries, but at 
the price of restricted placement options. Other solutions use 
passive tags on monitored objects or require no tags at all, but 
many of these systems have prohibitive characteristics. For 
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instance, camera based systems generally will not work if their 
view is occluded. Many other systems that rely on passive 
tags or do not use tags require direct line-of-sight or close 
proximity to work. 

Previous approaches not only have signifcant drawbacks and 
constraints in their use and operation, but also in their cost. 
Even the most affordable electronic tags, that use inexpensive 
analog components, cost several dollars to produce; putting 
them out of reach for liberal use in many environments. 

As such, our goal was to design and develop small, cheap, 
easy-to-install tags that do not require any batteries, silicon 
chips or discrete electronic components, and which can be 
monitored without direct line-of-sight. 

In this paper, we propose MechanoBeat, which provides a so-
lution that leverages the sensing capabilities of ultra-wideband 
(UWB) radar to detect harmonic oscillations produced by ultra 
low cost tags. MechanoBeat uses unique harmonic oscillations 
or "heartbeats" as tags. These tags can be mounted on various 
stationary or movable objects and are monitored remotely by 
UWB radar boxes which sense when a tag is activated. 

To our knowledge, no other research has explored using har-
monic oscillation as a tagging mechanism in conjunction with 
UWB radar. Here we investigate the limitations of UWB radar 
to detect and classify harmonic oscillation. 

We explore various oscillation based tag designs that allow 
for both stationary and mobile use cases. All of our tags can 
be printed on hobbyist grade 3D printers using various plastic 
flaments and can easily be adapted for injection molding. Our 
proposed tag designs can be manufactured for well below a 
dollar and require no power and minimal maintenance. 

The proposed tags can be classifed into two categories: station-
ary tags and mobile tags. Stationary tags can be used to detect 
interactions with stationary objects, for instance, kitchen appli-
ances (freezers, microwaves, cabinets, drawers, etc.), washing 
machines, water faucets, and so on. These interactions are 
important for creating life logs, smarter homes, smarter work-
places, and potentially facilitate ambient assisted living. On 
the other hand, mobile tags can be attached to pill bottles, 
sugar jars, water bottles, etc., to track individuals’ medication 
routines, sugar intake, and hydration status, respectively. 

To fnd when and where tags are activated we develop a deep 
learning classifcation pipeline which takes radar data as in-
put and outputs the tags that are currently active. We show 
empirically that our pipeline is robust to environmental noise 
and capable of inferring tag activity even when the radar is 
obscured. Furthermore, we demonstrate the versatility of our 
deep learning pipeline to detect a variety of tags in many 
potential use cases. 

RELATED WORKS 

Object-Interaction in Indoor Environments 
Recognizing interactions with different objects in an indoor 
environment has been and continues to be an active area of 
research. Several approaches have been proposed to tag dif-
ferent everyday objects and to recognize when and how a user 

interacts with them. The most straightforward being, placing 
powered digital sensors directly on a given object, or on the 
user’s body [22, 30, 33, 27]. Such approaches have the beneft 
of potentially improved accuracy resulting from direct contact 
and minimal additional setup, but at the expense of obtrusive-
ness, affordability, and maintainability. Commercial sensors 
can often be costly [5, 29, 18]. Moreover, battery powered 
sensors require their batteries to be changed, adding to the cost 
and complexity of operation. 

To circumvent the problems associated with battery-powered 
sensors, some tags piggyback on the existing power infrastruc-
ture of the environment to harvest energy [46]. For instance, 
PowerBlade [11] uses harvested energy from the electrical 
plug that it sits on. Another example, Sozu, uses power gener-
ated from the use of the object that was tagged, to generate a 
RF chirp that is then picked up by a remote hub [43]. Similar 
to RFID, Sozu harvests a bit of energy through a different 
power harvesting mechanism and transmits a signal with that 
energy to a base station. Such approaches do remove the need 
for battery changes, but requires electronics to be deployed in 
different target locations. 

Object-borne sensors can be very accurate, but their cost and 
maintenance implications have spurred research into sensors 
that can detect many object interactions in a wide area. Such 
sensors are often centrally located and have access to power, 
making them quick to set up in a large area, often cheaper 
than on-object sensors, and easier to maintain. Such systems 
may still have tags that are placed on objects, but generally 
the tags require no power and are not functional without the 
main sensor’s input. 

One wide-area approach is to use a camera based system to 
determine how and when an object is interacted with [21, 
25]. However, this approach is fraught with privacy concerns 
(especially for home deployment) and suffers from strict line-
of-sight requirements. Another popular approach leverages ex-
isting infrastructure for wide range sensing. These approaches 
have utilized, plumbing [13, 14], gas lines [8], HVAC [31], 
and electrical systems [9, 17, 32] within interiors to fnd how 
individuals interact with objects and their environment. Other 
efforts for wide-area sensing have used, laser vibrometry [44], 
EMI antennas [45], and multi-sensor-fusion boards [23] to 
achieve high accuracy large-area sensing. Vibrosight [44] for 
instance, used a laser vibrometry sensor that requires direct 
line-of-sight to sense the interaction with tags, whereas user 
interaction with our proposed MechanoBeat can be discovered 
with a UWB radar array which does not require any line-of-
sight and can detect tags from behind obstacles like wood, 
brick walls, etc. [39, 4]. 

Sensing with RF Signals 
Sensing with RF signals has received signifcant attention 
from the research community. Different parts of the RF and 
microwave spectrum have been explored with radar, software 
defned radio, and commercially available WiFi transceivers 
for different sensing applications including indoor localization 
and tracking [41, 3, 16], room occupancy monitoring [7, 28], 
vital sign monitoring [24, 35], activity recognition [20, 47]), 
and sleep monitoring [34]. Building on the existing literature, 
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we use a UWB radar array for monitoring interaction with 
everyday objects. UWB radar offers several advantages over 
other radar architectures including FMCW radar. For example, 
due to the narrow pulse duration and high update rate, the 
UWB offers higher range resolutions specially for moving 
objects compared to FMCW radar [12]. Thus, UWB radar 
enables us to detect subtle harmonic oscillations of our tags. 

Another approach to wide-area sensing uses backscatter tech-
nology such as Wi-Fi for sensing interaction with different 
objects. This technique uses passive tags, such as RFID or 3D 
printing wireless connected objects [23, 19, 6, 42, 36]. How-
ever, these 3D printed wireless connected objects [19], require 
printing backscatter antennas and switches in order to encode 
and transmit interaction data to the receiver. These antennas 
and switches are object specifc, such as a detergent fowmeter, 
anemometer, scale, etc. which are not necessarily reusable and 
incur signifcant cost in the instrumentation process. Aircode 
[25] and Infrastructs [38] both embed tagging information 
in the fabrication process and read the tag through computa-
tional imaging or terahertz imaging methods respectively. The 
former requires line-of-sight imaging to reach the embedded 
tags, while the latter has better penetration capability but more 
expensive transmitters and receivers. 

On the other hand, our proposed MechanoBeat is reusable and 
scalable allowing it to be attached to nearly any stationary or 
movable object. Unlike the above-mentioned approaches, in 
this study, we aim to develop an electronics-free tag based on 
low-cost, 3D printable harmonically oscillating objects. Upon 
user interaction, the attached tag triggers a unique mechanical 
oscillation that can be detected with a UWB radar array even 
in the presence of human movement or other vibrating objects. 

MECHANOBEAT: SYSTEM OVERVIEW 

Design considerations 
Before explaining our technical approach, let us discuss a few 
specifc design considerations that went into the development 
of the MechanoBeat tag and sensor system. 

• In this study, we aimed to design and develop a low burden 
mechanism for recognizing interactions between humans 
and everyday objects with simple, low-cost tags and con-
tactless sensors. 

• We required the tags to trigger a specifc oscillation pattern 
with unique spectral characteristics at the moment of human-
object interaction for a short period. Moreover, a reset 
mechanism can mark the end of the interaction and allow 
differentiation between two consecutive interactions with 
the same object. 

• Our goal was to make low-cost tags with small form factors 
that are scalable. Commodity desktop 3D printers offer 
readily scalable solutions for printing mechanical tags with 
cheap materials. The tags should be compatible and easily 
attachable to different everyday objects of interest. Lastly, 
the tags should be durable and reusable which can provide 
us with a sustainable and a long-lasting human-object inter-
action tracking solution. 

• The sensing system should not require additional instru-
mentation of the user’s body. The system should be able to 
detect active tags during human-object interaction in noisy 
and real-world conditions. Most importantly, in a real-world 
setting, there is no guarantee that a direct line-of-sight can 
be established between the sensor and the tags. Thus, our 
system should be able to have high accuracy even when the 
tags are obscured (non-line-of-sight scenario). 

Based on these design considerations, we aimed to design, 
develop, and validate an approach that uses electronics-free 
3D printable simple mechanical oscillators along with a UWB 
radar-based contactless sensor array. MechanoBeat leverages 
the P440 UWB radar operating at 3.1-4.8 GHz frequency 
that can see through different objects and detect human-object 
interactions happening behind a wooden or cardboard partition 
and even behind walls. We leverage multiple UWB radar 
units placed at different locations to observe human-object 
interactions from multiple points of view. The complementary 
signals are then fused to achieve better detection accuracy. 

MechanoBeat Tag: Harmonic Oscillator 
The simple harmonic oscillator designs that we explored in 
this paper as MechanoBeat tags can broadly be classifed into 
two types: stationary and mobile tags. The stationary tags are 
appropriate for tagging stationary objects such as a drawer, 
door, or cabinet. On the other hand, the mobile tags can be 
used to tag objects that move with the user such as a pill bottle, 
water bottle, or a sugar jar. 

a b
Figure 2. Stationary tag design: (a) pendulum based tag (b) linear 
spring-mass tag. 

Stationary Tags: Since the user-object interaction mechanism 
for stationary objects (e.g., a drawer is opened and closed 

q 
lT = 2π Single Ball Double Ball gγ 

Version A B C D E F G H I J 

Long Arm (mm) 40 60 80 28 42 40 60 80 100 100 
Short Arm (mm) 0 0 0 0 0 28 42 56 70 80 
Gravity Ratio (γ) 1 1 1 1 1 0.3 0.3 0.3 0.3 0.2 
Frequency (Hz) 2.5 2.0 1.8 3.0 2.4 1.4 1.1 1.0 0.9 0.7 

Table 1. Different combinations of arm lengths to generate different fre-
quencies for pendulum based tag. 
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by applying outward or inward horizontal force) does not 
change over time, simple oscillators including a pendulum and 
a spring-mass can be used with an easy mounting technique. 
Another advantage is that once these simple tags are mounted 
to a fxed location, the direction of gravity does not change 
over time. As a result, simple tags that are comprised of a 
pendulum or spring mass oscillator maintain their periodic 
cycles. Figure 2(a) shows a pendulum-type tag design which 
includes two arms with length l. To tag multiple objects with 
this pendulum design, we need a scalable approach to design 
unique oscillation frequencies. To this end, we can either use 
a single ball option by attaching a weight to the lower arm 
and keeping the other arm free, or we can have a double ball 
option with weights at both arms. Both options offer unique 
oscillation frequencies. Table 1 illustrates examples of differ-
ent pendulum-based tags and associated design parameters to 
produce unique frequencies in the range of 0.7 Hz to 3 Hz. 
The oscillation frequency is calculated as the inverse of the q 

ltime period found in T = 2π gγ . The gravity ratio γ comes 
into play when we create a double ball tag with different arm 
lengths and can be calculated as (long − short)/long. This 
factor reduces the effect of gravity and increases the length 
of the period causing lower oscillation frequencies for tags 
with weights in two arms compared to the single ball option. 
Pendulum-based tags with both a single ball and double balls 
provide us with the opportunity to create distinguishable tags 
in a variety of oscillation frequencies. 

Figure 2(b) shows another stationary tag, a linear spring-mass 
design (upside down). We attach a magnet to the bottom of 
the object we want to interact with (pill bottle, sugar jar, water 
bottle, etc.) and place it on top of the tag. The metallic ball 
at the center of three springs will be attracted to the top. The 
tag activates when the object is taken off the surface of the 
tag, causing the metal ball to oscillate at a unique frequency 
determined by the spring constant (k) and mass (m) of the ball p m(T = 2π k ). Using different springs with varying spring 
constants we can design more tags for large scale use. 

Balance Wheel

Hair Spring

Wind-up Spring

Pallet Fork

Holding Cage

a b
Bottle Body

Escape Wheel

Figure 3. Mobile tag design: (a) tourbillon bottle tag explosion view and 
(b) assembly view. 

Mobile Tags: Although pendulum and spring-mass tags are 
reliable for stationary setups, they are not robust to mechanical 
disturbances such as a sudden change of position or orientation. 

Thus, they are not suitable for mobile settings where the tagged 
object may shift its 3D location in the environment. 

Our mobile tag draws great inspiration from a tourbillon de-
sign, which has been used in mechanical watches for centuries 
to maintain accuracy against drag due to gravity. A basic tour-
billon design (Figure 3a) has a holding cage, a wind-up spring, 
and a core revolving structure including a balance wheel, a 
pallet fork, an escape wheel, and a hairspring. The balance 
wheel is the "beating heart" of the tourbillon, which is anal-
ogous to the pendulum or spring-mass in the stationary tag 
design. It oscillates around its axis and is regulated by the 
connected hairspring. The key to the tourbillon design is to 
make the balance wheel revolve around the central axis of 
the entire holding cage, canceling the applied gravity effect. 
This is achieved by connecting the balance wheel to an escape 
wheel via a pallet fork. While the balance wheel oscillates on 
its own axis, the rotational motion is transmitted to the escape 
wheel which drives the entire core structure to revolve around 
the holding cage, one tick at a time. The energy of the constant 
ticking motion is from the wind-up spring. Figure 3(b) shows 
our design which integrates a printed tourbillon tag (based on 
Thingiverse Thing ID: 2751917) to a threaded pill bottle lid. 
The tourbillon’s holding cage serves as the bottle lid and the 
wind-up spring can be fxed to the inner wall of the bottle body 
when the bottle lid is put on. When the lid is opened or closed, 
the twisting motion of the lid will wind the spring, driving the 
tourbillon to revolve. Note that different unique oscillation 
frequencies can be ensured by adjusting the balance wheel, 
the hairsprings, and the ticking steps of the escape wheel. 

MechanoBeat Sensor: UWB Radar 

Figure 4. (a) P440 MRM radar module with an absorber behind the 
antenna. (b) Top view of the radar with an absorber. (c) Radar Box with 
Raspberry Pi and a hard disk drive. (d) Enclosed radar box. 

MechanoBeat uses PulsON 440 (P440) ultra-wideband radar 
in monostatic mode [1]. The operating frequency of the radar 
ranges from 3.1 to 4.8 GHz with the center frequency at 4.3 
GHz. Due to wide bandwidth and therefore extremely short 
pulse duration (nanosecond level), UWB radars have very high 
range resolutions which make them appropriate for fne-grain 
sensing applications like monitoring vitals signs and sensing 
harmonic oscillations. As shown in Figure 4(a), the P440 
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unit has a transmitter and a receiver antenna. To scan a target 
living space, the transmitter antenna repeatedly transmits a 
low energy, short-duration impulse signal which gets refected 
by different stationary objects (e.g., furniture and other static 
clutter), moving objects (e.g., MechanoBeat tags, fan), and 
the human body. The backscattered impulse signal is received 
by the receiver antenna and the time-of-fight (ToF) of these 
received pulses is estimated from the round-trip propagation 
delay, which is then used to calculate the target’s distance by 
multiplying with the speed of light. The backscattered impulse 
signal from multiple scans is stacked together to form a two-
dimensional radargram which is used to detect the oscillation 
of different active MechanoBeat tags. Figure 5 illustrates a 
sample radargram signal in the form of an image. The oscillat-
ing pendulum-based MechanoBeat tag was placed at a distance 
of roughly one meter from the radar which corresponds to the 
55th range bin. Here, the horizontal axis indicates the distance 
or range bin number, also known as the fast time. Along the 
vertical axis from top to bottom, the scan number increases. 
This axis is also known as slow time (in seconds). The raw 
radargram signal captures refections from all the objects (both 
moving and stationary) at different distances or ranges. Since 
our living spaces are primarily made of stationary objects and 
the refections from the stationary objects do not change across 
different scans, we can observe vertical lines in the radargram. 
However, if we observe closely (between the onset and the 
end of oscillation in Figure 5), we can see periodic changes 
due to the active MechanoBeat tag. 
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Figure 5. Radargram of a pendulum-based MechanoBeat tag oscillation. 

The radar antennas are omnidirectional, so a microwave ab-
sorbing material of dimension 8.5”× 4.5”× 1.13” is placed at 
the back of the antennas to attenuate the signals from behind 
the radar. The absorber material we used is a commercially 
available LF75 absorber which provides attenuation of -20 dB 
for a frequency range of 2.5 GHz to 40 GHz. The PulsON 440 
UWB radar unit, the absorber material, a Raspberry Pi unit, 
and a hard disk drive to store the data locally are placed in a 
3D printed T shaped box as shown in Figure 4(b-d). The radar 
data collection program written in C, is run on the Raspberry 
Pi in the background and stores each minute of data locally 
with corresponding timestamps. 

MechanoBeat Sensing Pipeline 
The sensing pipeline starts from the radargram data (as shown 
in Figure 5) which contains refections from both stationary 
(e.g., walls, furniture) and moving objects (e.g., MechanoBeat 
tags, fan, human movements) in the living space. Each column 

of the radargram matrix can be considered as a time series 
signal corresponding to a single range bin. This time domain 
signal contains refection information from different stationary 
and moving objects at that particular range bin. To get rid 
of the stationary components as well as the unwanted higher 
frequency oscillation from different machines or appliances 
(e.g., fan or air-conditioner), we apply a bandpass IIR flter on 
the time domain signals of each range bin across different scan 
numbers or slow time. Thus, the fltered radargram only pre-
serves the operating frequency range of the tags and removes 
all undesirable frequencies. 

To train a user-object interaction classifer based on the tag 
frequency, frst we window the radargram signal across the 
slow time or scans. Instead of using all the range bins, we 
focus on a specifc window of range bins (i.e., focus range 
region). Since each tag is located in a small portion of the 
range covered by the radar and the tag’s oscillation signal is 
subtle in nature, focusing on a window of range bins allows 
the subtle tag frequency to be preserved. Moreover, similar 
to the windowing across slow time which allows the classifer 
to detect an active tag over time, the windowing across fast 
time or range allows the classifer to automatically locate the 
position of the tag. Now, to develop the classifer, we have 
explored both the traditional machine learning approach with 
manual feature engineering and the deep learning approach. 

Modeling with Traditional ML approach 
From the temporally fltered and windowed radargram, we ex-
tract the time aligned 1D signal as well as individual 1D time 
series signals associated with a few specifc range bins. The 
time-aligned 1D signal is extracted by aligning the temporal 
signals for each range bin (based on correlation) and summing 
up the signals. The individual time series are extracted from 
the central range bin of the focused range region as well as 
N range bins in either direction of the central bin. While the 
1D time aligned signal tries to capture the overall oscillations 
that are prevalent in the focus range region, the 1D time series 
at specifc range bins can capture variabilities in oscillations 
across different parts of the focus range region. We apply a fast 
Fourier transformation (FFT) on each of the 1D time series sig-
nals and estimate the frequencies corresponding to the highest 
and second highest peaks to estimate the most dominant peri-
odicities in the signal. We also estimate the zero crossing rate 
of each of the 1D signals as a measure of noisiness. Lastly, we 
train different traditional machine learning algorithms includ-
ing random forest, K nearest neighbors, and support vector 
machines. Random forest consistently outperformed the rest 
of the classifers that we considered. 

Modeling with Deep Learning approach 
As single range bin inputs have only one dimension, time, 
we adopted a one dimensional convolution neural network 
(1D CNN) architecture. Our 1D CNN model has a total of 
six 1D convolutional layers. Each layer contains 64 kernels, 
uses a ReLU activation function, and has a stride length of 1. 
The convolutional layers are split into two sections that are 
separated by a mean pool layer. The frst section has kernels 
of length 3, 5, and 7. The mean pool layer has a pool size of 
2 and a stride length of 2. The second section has kernels of 
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length 9, 13, and 27. After the second convolutional section, 
there is a second mean pool with a size of 2 and stride of 
2. Then a fatten layer followed by a fully connected layer 
with a ReLU activation function and size 128. Finally, a 
fully connected prediction layer with a softmax or sigmoid 
activation function and a size equal to the number of classes. 
We use softmax for all experiments except the multiple tag 
classifcation experiment where we use sigmoid. The loss 
is categorical cross entropy for all experiments except for 
multi-tag classifcation where the loss is binary cross entropy. 
For all experiments, the optimizer is Adam using the default 
parameters in TensorFlow. 

A minimal stride length is used to preserve as much informa-
tion as possible in each layer. We found that 64 kernels gave 
us minimal overftting while still providing low validation and 
test loss. In order to reduce further over-ftting, we introduced 
spatial dropout with a drop out rate of 0.1 between the frst 
and second convolutional layers as well as a spatial dropout 
with a drop out rate of 0.05 between the second and third 
convolutional layers in both convolutional sections. 

M

Single
range bin

embeddings

M

Single range
bins from raw

scan

Single Range
 Bin CNN

N

Multi Range
Bin Model

Dense Layer
size: 128

Dense Layer
size: 128

Dense Layer
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Flatten Layer

1D Convolution Layer
kernel size: 3

1 range bin 
(1, N)

1D Convolution Layer
kernel size: 5

1D Convolution Layer
kernel size: 7

1D Mean Pool
pool size: 2

1D Convolution Layer
kernel size: 27

1D Convolution Layer
kernel size: 13
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pool size: 2
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Dense Layer
size: 128

multi range bin
embedding
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Figure 6. Deep learning classifcation pipeline. 

Input is a single range bin for a given time window of length 
N. The small time window allows the model to detect short 
lived oscillations enabling greater freedom in tag design and 
future applications. After the single range bin model is trained 
the prediction layer is removed and all layers are frozen. At 
this point the model outputs an embedding of length 128 for 
each range bin inputted. The embedding for each range bin 
in a given time window is then combined to get a 128 × M 
embedding for the whole time window. 

The second step of our deep learning pipeline takes a 128× M 
embedding as input and outputs the fnal tag class. For this 
step a simple fully connected neural network model is used, 
which we will refer to as the mutli-range bin model. The frst 
layer in the model is a fatten layer, followed by three dense 
layers of size 128, 128, and 64 each with a ReLU activation 
function. Between each of these layer is a dropout layer with a 
drop out rate of 0.1. The fnal layer is a prediction layer with a 
softmax activation function and a size equal to the number of 

classes. The loss for the multi-range bin model is categorical 
cross entropy and the optimizer is Adam using the default 
parameters in TensorFlow. 

PROOF-OF-CONCEPT EXPERIMENTS WITH SIMPLE 
HARMONIC MECHANICAL OSCILLATOR 
For the initial proof of concept of our idea, we ran a series of 
experiments with two different simple harmonic oscillators as 
shown in Figure 7: (a) spring-mass and (b) pendulum. 

Experimental Setup 

a b
Figure 7. (a) Spring-mass and (b) pendulum oscillator. 

Mass Frequency (rpm) String length Frequency (rpm) 

80 g 160 10 inch 59.7 
100 g 144 12 inch 54.8 
130 g 128 14 inch 50.7 
160 g 116 16 inch 47.5 

Table 2. Oscillation frequencies in rotations per minute (rpm) (left) for 
different spring-mass oscillators with different mass and a spring con-
stant of 5N/m and (right) for different pendulum frequencies for differ-
ent string lengths. 

Experiment 1: Spring-Mass Oscillator 
For the frst proof of concept experiment, we set up a simple 
spring-mass oscillator where the frequency of oscillation is de-
termined by the mass attached to the spring. We used a single 
spring with a spring constant of 5 N/m and varied the mass. 
As shown in Table 2 (left), different oscillation frequencies 
can be generated simply by changing the mass weights. 

We employed two radars on two adjacent walls to sense the 
oscillation. The spring-mass setup was placed at a distance 
of one meter from each radar. In a noise-free setting, we 
could detect the peak frequencies of oscillation for all the 
spring-based tags in the frequency domain after performing 
time alignment and FFT. Figure 8 (left) shows the frequency 
peaks detected for different spring-based tags which closely 
matches with the theoretical frequencies in Table 2 (left). 

We also employed frequency-based feature extraction and 
applied machine learning on the collected spring tag oscillation 
data with a window size of 10 seconds and a shift of 0.5 
seconds. With no external noise, our detection algorithm using 
random forest classifcation resulted in 98% accuracy and an 
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F1 Scores of 0.98 for Radar 1 and 93% accuracy with an F1 
score of 0.94 for Radar 2. 
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Figure 8. Estimation of the fundamental frequency of (a) (left) different 
spring-mass oscillations and (b) (right) pendulum oscillations in noise-
free setting. 

Experiment 2: Pendulum-based Oscillator 
The second type of simple harmonic oscillator we used is the 
pendulum with which we set up the same experiment as ex-
periment 1. Table 2 (right) shows that by changing the string 
lengths, one can change the frequency of the oscillation. Fig-
ure 8 (right) shows the frequency peaks detected for different 
spring-based tags which closely match with the theoretical fre-
quencies presented in Table 2 (right). In a noise-free condition, 
the pendulum tag is detected by a random forest classifer with 
an 88.76% F1 score. 

Experiment 3: Window Size Test 
Window size can have a signifcant impact on the tag classif-
cation. Since practical harmonic mechanical oscillators can 
produce reasonably short-lived oscillation (due to friction), 
a classifer that can accurately detect the active mechanical 
tags with a short time window is desirable. On the other hand, 
a short time window from the radar’s signal contains only a 
few oscillation cycles which increases the likelihood of a low 
signal to noise ratio (SNR). 
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Figure 9. shows the performance of traditional ML and DL approaches 
in terms of F1 score across different window sizes. 

In this experiment, we evaluated the performance of both the 
traditional ML model (i.e., random forest) and the deep learn-
ing model (i.e., 1D CNN) with multiple window sizes. As seen 
in Figure 9, both random forest and 1D CNN models perform 
highly at the window size of 10 seconds. However, as the 

window size became smaller, our 1D CNN model continues 
to have high performance while the performance of random 
forest decreases sharply. With the window size of 3 seconds, 
our deep learning approach achieved an F1 score of 0.9693. 
Since a model operating at a smaller window size has the 
advantage of better detecting short lived oscillations and can 
more precisely fnd the transition from an oscillating tag to a 
stopped tag, we opted for the 1D CNN model for this study. 
From this point on, we will only report the results of the 1D 
CNN model. 

Experiment 4: With External Noise 
This experiment was performed to test the robustness of the 1D 
CNN model in the presence of different external noises. To add 
external noise, we introduced different human activities as well 
as electromechanical machines close to the active harmonic 
oscillators. The human activities include walking, typing, and 
repeatedly moving hands. We also used a pedestal fan close 
to the active harmonic oscillators to introduce machine noise. 
The four spring-mass and four pendulum frequencies outlined 
in Table 2 were used in the presence of each of these external 
noises. 

Table 3 and Table 4 show the performance of 1D CNN-based 
harmonic oscillator classifcation model with two different 
window sizes (i.e., 3 seconds and 5 seconds). With a win-
dow size of 3 seconds, the classifer performs moderately well 
across different noise categories. The performance of the clas-
sifer was at it’s lowest with hand motion because any random 
hand motion can degrade the quality of a 3-second long win-
dow signifcantly. However, with a slightly larger window 
size of 5 seconds (Table 4), the 1D CNN achieved better per-
formance across all the noise settings. The longer window 
captured more periods of the oscillation which increased the 
SNR. 

Metric/Noise Noise Free Hand Motion Walking Fan Typing 

Precision 0.9695 0.7064 0.8960 0.8013 0.9053 
Recall 0.9690 0.7026 0.8953 0.8012 0.9043 
F1 score 0.9693 0.7045 0.8957 0.8012 0.9048 

Table 3. Performance of tag classifcation with different introduced noise 
with DL approach for a window size of 3 seconds 

Metric/Noise Noise Free Hand Motion Walking Fan Typing 

Precision 0.9897 0.8785 0.9441 0.9079 0.9739 
Recall 0.9897 0.8717 0.9429 0.9039 0.9709 
F1 score 0.9897 0.8751 0.9434 0.9059 0.9724 

Table 4. Performance of tag classifcation with different introduced noise 
with DL approach for a window size of 5 seconds 

Experiment 5: Displacement Test 
In this experiment, we investigate what the minimal level of 
displacement a harmonic oscillator should generate for it to 
be reliably detected by our radar and classifer. The oscillator 
displacement can be measured by the peak-to-peak distance 
between two extreme positions of the oscillation. To this end, 
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we started a spring-mass oscillator and allow it to oscillate 
for a long period (i.e., 1 hour) until the oscillation becomes 
almost invisible. The spring-mass tag with an attached mass 
of 160 grams and a 5 N/m spring constant was left to oscillate 
at 116 rpm. An ultrasonic distance sensor was placed at the 
base for measuring the distance of the mass from the bottom. 
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Figure 10. Tag frequency estimation accuracy at different oscillation 
peak-to-peak distance values. 

Figure 10 shows that at a higher peak-to-peak distance the 
oscillation could be detected reliably by our system. However, 
as the peak-to-peak distance goes below 1 mm, the oscillation 
detection accuracy of our classifer lowers signifcantly. For a 
certain oscillation to be visible to our UWB radar and 1D CNN 
based system, the minimum displacement has to be at least 1 
mm. Comparing the minimum displacement (1 mm) with the 
range resolution of the UWB radar (9 mm), we can see that 
MechanoBeat is achieving sub-pixel level oscillation resolving 
capability. In recent work on video motion magnifcation, we 
can see how an algorithm captures sub-pixel level oscillation 
information [26, 10]. Lastly, we also ran the random forest 
model on this data and found that it failed to reliably discover 
oscillation which produces less than 3.048 mm of peak-to-peak 
displacement. 
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Figure 11. Detecting active harmonic oscillator at multiple distances. 

Experiment 6: Detecting Oscillation across Multiple Lo-
cations 
In the previous experiments, we assumed that we know the 
location of the harmonic oscillators and our 1D CNN model 
extracts oscillation information from Location ± N range bins 
(N is typically less than 50). In this experiment, we aim to 
explore whether the proposed harmonic oscillation detection 

scheme works across multiple locations. We trigger a spring-
mass oscillator at four different locations in a living space 
which results in four radargram recordings. We sweep the 
focus range of our 1D CNN model across the entire range to 
detect the oscillation and associated probabilities at multiple 
locations. Figure 11 shows the probability of a certain tag 
across the entire range of the radar. For each of the locations 
(mentioned in the legend), we can see the probability value 
peaks at a close-by range value. This experiment shows that 
the MechanoBeat system is able to scan the entire room and 
fnd the activated (oscillating) tag in a room when the location 
of the tag is unknown. By using multiple UWB radar units and 
by inferring the activated tag locations, we can identify the 
locations of the activated tags over a two-dimensional space 
(further details in Figure 18). 

Experiment 7: How many Tags can we detect? 
A number of factors play a role in determining the number of 
tags that can be reliably detected by our system. Oscillation 
frequency is the key distinguishing factor, other than location, 
for each tag; thus, we wanted to know what range of frequen-
cies we can reliably detect. The upper bound for this range 
broadly depends on the sampling frequency of the UWB radar 
hardware, which in turn depends on the confgured maximum 
range of the UWB radar. As our experiments are performed in 
a small indoor space, we set the maximum range of our radar 
to 4.01 m. The subsequent sampling frequency was 68 Hz. 
According to Nyquist theorem, we should be able to detect 
oscillations up to half of that frequency, making the fastest 
frequency we can detect 34 Hz. In addition to the radar’s 
limitations, there are also tag limitations. As the oscillation 
frequency of a pendulum based tag depends solely on its arm 
length, there is a practical lower bound on the frequency a tag 
can have. For example, if we take the longest practical tag 
to be 12 cm that puts the lower bound for frequencies around 
1.4 Hz. Now that we have a lower and upper bound, we need 
to investigate the smallest frequency difference that can be 
detected by the system. For this purpose, we conducted a 
quick experiment using the same simple harmonic pendulum 
oscillator used in the proof of concept Experiment 2. We used 
two different pendulum oscillators with string lengths of 10 
cm and 10.67 cm respectively. Both oscillators were placed 
at the same distance, around one meter, from the radars. Both 
were interacted with 10 times with each interaction lastingq 

laround 10 seconds. Using the equation T = 2π g , we cal-
culate the frequency by taking the inverse of the time period. 
We found the corresponding frequencies to be 3 rpm or 0.05 
Hz apart. The instances of both frequencies were able to be 
distinguished with a mean F1 score of 0.85 using the machine 
learning classifer. 

With this empirical bound on minimum frequency resolution, 
we were able to calculate the number of oscillators for any 
given arm/string length constraints. With the help of equation 

gL =
(2π f )2 , we found the arm lengths between 2 cm and 12 

cm that are at least 0.05 Hz apart. We found that a total of 42 
distinguishable oscillators can be made as depicted in Figure 
12. This is a reasonable amount for use in indoor environments 
when tagging everyday objects. As the equation suggests, 
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Figure 12. Frequency vs string length. 

the arm length is inversely proportional to the square of the 
oscillation frequency, this allows us to have more tags with 
smaller arm lengths. For instance, if we decrease the upper 
limit of our allowable arm length by half, to 6 cm, we can still 
make 30 oscillators with a difference of 0.05 Hz (3 rpm). It is 
also important to note that tags with the same frequency could 
likely be used in multiple places in the same environment as 
the machine learning pipeline may be able to leverage location 
information to distinguish them. 

REAL WORLD DEPLOYMENT WITH STATIONARY TAGS 

Experimental Protocol 
To test MechanoBeat in a real world scenario, we deployed 
MechanoBeat tags in a kitchen environment. We outftted a 
drawer, cabinet, freezer, refrigerator, microwave, and counter-
top with pendulum and spring-mass based tags. Each tag 
has a unique oscillation frequency which was achieved by 
varying the arm length (i.e., 40, 60, 70, 80, and 100 mm) 
and spring-mass weight. One UWB radar box was placed 
on the stove-side wall and a second radar box was placed on 
the wall opposite to the kitchen hallway. Both radars were 
placed a distance of at least one meter away from the closest 
tag. The location of each tag and UWB radar boxes can be 
seen in Figure 13. Figure 14(a-c) shows how each pendulum-
based tag was attached to a given appliance, cabinet or drawer. 
Figure 14(d) shows a condiment storage rack instrumented 
with a spring-mass-based tag and a magnetic reset mechanism. 

All tags were attached to a stationary part of their correspond-
ing appliance. Each tag was activated when its application 
door was opened, or in the drawers’ case when the drawer was 
pulled out. Opening an application’s door releases the oscilla-
tor arm, thus activating the tag. After the interaction is over 
we have a reset mechanism to stop oscillation. When the cabi-
net/drawer is closed the oscillator arm is held in place by the 
door/drawer. The freezer and refrigerator use a secondary part 
called a reset arm which attaches to the freezer/refrigerator 
door. When the door is closed, the piece holds the pendulum 
up so it cannot swing. When the condiment is taken away from 
the rack, the spring-mass oscillation is activated for a period 
of time until it dies out. As soon as the condiment bottle is 
replaced in the rack, a magnet attached to the bottom of the 
bottle attracts the mass back to its initial position. 

Each experiment started with 10 seconds in which no tag was 
active. Then the tagged appliances were interacted with for 
10 rounds. Interaction with the appliances involves opening 
and closing the appliance door. On average, the interaction 

duration (time span between opening and closing) was ap-
proximately 10 seconds. We refer to each round of appliance 
interaction as a cycle, i.e. collecting 10 cycles of data means 10 
independent interactions with that appliance. We recorded the 
start time, end time, tag location, and interaction time for each 
cycle so that we have ground truth data for use in evaluation 
and training of the tag activation detection and classifcation 
model. 

Tag Detection and Classifcation 
We fne tuned a 1D CNN that had been pre-trained on data 
collected from Experiment 4. The multi-range bin model 
was trained from scratch. In order to incorporate data from 
both radars in our model, we average the concatenated single 
range bin embeddings before passing them to the multi-range 
bin model. We used a three second time window with a one 
second shift to convert our continuous time series data to 
discrete instances which we provide to our model. For each 
instance, we provided the model with range bins starting at the 
tag location minus 50 and ending at the tag location plus 50. 

When training the entire pipeline we used leave-one-cycle-out 
cross-validation, wherein one cycle from each tag was held out 
for testing and another cycle held out for validation. All other 
cycles were used for training. We calculated the confusion 
matrix for each held out test cycle and summed all confusion 
matrices to get the results in Figure 17. 

Our results show that MechanoBeat is able to accurately dif-
ferentiate the various tags despite their close proximity to one 
another. Additionally, MechanoBeat is able to distinguish be-
tween no tag and tags with good accuracy. It is important to 
keep in mind that there is some lag between when a participant 
is instructed to start and end an interaction with an appliance 
and when the interaction actually starts and stops. As such, 
some instances that we labeled as no tag may have contained 
an active tag and vice versa. Thus what is more important than 
the absolute accuracy compared with our ground truth is that 
for each instance MechanoBeat is able to detect the correct 
tag and shows no tag before and after the instance. We demon-
strate this characteristic for a single recording in Figure 16 in 
which our system is able to infer the correct tag at the right 
moment and has instances of no tag between each sequence 
attributed to a tag. As the fgure shows there is generally a 
slight decrease in the probability of the tag towards the end of 
the active period, we attribute this to the decreasing displace-
ment of the oscillating tag arm over time. This is supported by 
Experiment 5 where we show our model has reduced accuracy 
at sub millimeter-level displacements. 

Multiple Tag Classifcation 
We designed this experiment to investigate the accuracy of 
our system when two objects are interacted with at the same 
time. For instance, one can take an item from refrigerator 
to microwave while keeping the refrigerator door open. In 
order to create such interactions, two kitchen appliances were 
interacted with one after another with minimal transition time. 
Each combination of tag interactions was performed for 10 
cycles. Our 1D CNN model trained only on previously col-
lected single tag data was used to classify tags in the multiple 
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Figure 13. (a) Side view and (b) front view of the kitchen with instrumented pendulum based tags. 

activation setting. Our model can reasonably detect such inter-
actions and can identify which tags were interacted with an F1 
score of 0.93. 

Through Wall Sensing 
In the real world, it is not always convenient or possible for 
a radar box to have a clear view of a given tag. Obstructions 
are common in indoor environments and can include walls, 
furniture, and people. In order to show MechanoBeat is robust 
to such occlusions we conducted the stationary tag experiment 
in an NLOS scenario. To simulate a non-line-of-sight situation 

Figure 14. The (a) cabinet, (b) microwave, and (c) refrigerator are 
instrumented with pendulum based tags. (d) A condiment bottle is in-
strumented with a linear spring-mass tag. 

71.4

8.6

2.8

2.2

1.8

4.6

8.6

0.9

99.1

0.0

0.0

0.0

0.0

0.0

5.7

0.0

94.3

0.0

0.0

0.0

0.0

5.5

0.0

0.0

94.5

0.0

0.0

0.0

4.3

0.0

0.0

0.0

95.7

0.0

0.0

3.6

0.0

0.0

0.0

0.0

96.4

0.0

14.6

0.0

0.0

0.0

0.0

0.0

85.4

No Tag Condiment Freezer Refrigerator Cabinet Drawer Microwave

Actual

No Tag

Condiment

Freezer

Refrigerator

Cabinet

Drawer

Microwave

P
re

d
ic

te
d

0

10

20

30

40

50

60

70

80

90

Figure 15. Confusion matrix for the stationary kitchen tags. 
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Figure 16. illustrates a sample recording. 

we placed the radar boxes behind 9 inches of material similar 
to that used in home walls. The NLOS scenario was conducted 
in an identical fashion to the line-of-sight scenario except for 
the added material. The confusion matrix for the non-line-of-
sight scenario can be seen in Figure 17. The recall, precision, 
and F1 score for both the line-of-sight and non-line-of-sight 
scenarios can be seen in Table 5. We can see that in the NLOS 
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Settings R P F1 
Line-of-sight 0.89 0.91 0.90 
Through Wall 0.87 0.93 0.90 

Table 5. The model performance in line-of-sight and non-line-of-sight 
(i.e., through wall) settings. The model performance was measured in 
terms of recall (R), precision (P) and F1 score. 

scenario MechanoBeat performs similarly well to the line-of-
sight scenario, which indicates our system is capable even 
when obstructed. 
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Figure 17. Confusion matrix for the stationary kitchen tags in a NLOS 
scenario. 

MOBILE TAG EXPERIMENTS 
Stationary MechanoBeat tags have a wide range of potential 
uses, but they are limited to a static location which may hinder 
some potential utilizations. In this section, we explore the 
design and results of a mobile MechanoBeat tag. We attach a 
mobile tag to a pill bottle to test one of the likely applications 
of such a tag. Tag oscillation is triggered when the lid of the 
pill bottle is twisted open. This oscillation can then be detected 
by the UWB radar and machine learning pipeline. Figures 1b 
and 3 show the prototype mobile tag design. 

In our experiment, a pill bottle tag is held in the participant’s 
hand while walking to four different chairs located in various 
locations within a 3m × 3.5m space. Participants began by 
walking from a designated starting point to chair 1 while hold-
ing the pill bottle. While seated, the participant opened the pill 
bottle starting the tourbillon’s oscillation which continued for 
approximately 10 seconds. Next, an activity simulating drink-
ing water from a cup (available near the chair) was performed 
to create a realistic medicine intake event. The same protocol 
was maintained for the rest of the chairs/locations sequentially 
from chair 2 through chair 4. The entire event was repeated 
10 times. 

The Mechanobeat sensor received strong refections from the 
moving body of the participant as well as the subtle motions 
from the tag’s oscillation. Leveraging two UWB radars placed 
at two adjacent walls in the room we can track the movement 
of a user by applying a standard localization algorithm. For 
a detailed description, please refer to [37, 2, 40, 15]. Figure 
18 illustrates the motion trajectory of a person in the room 
superimposed with the locations where the pill bottle tag was 
activated. The MechanoBeat system is able to localize and 
track the user in the room from the starting position to each of 

the chair’s locations accurately. The inferred trajectory also 
matches the ground truth (green dash line) well. Moreover, 
the pill bottle interactions were correctly detected at locations 
near to the chair locations. Figure 19 shows the model’s 
probability that the mobile tag is active against the ground 
truth, which clearly shows the models capability to distinguish 
active tag instances from non-active instances in the presence 
of moderate level of external body motion. By fusing the tag 
activation and location information, the MechanoBeat system 
can not only fnd when a mobile tag has been activated, but 
also its location in space. 
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Figure 19. Probability that mobile tag is active over time. 

SUPPLEMENTAL STUDY 
Another application for our object interaction algorithm is to 
detect the fow from a water faucet. Our goal was to detect 
interactions with the faucet lever by fnding the approximate 
water fow rate, namely: no fow, low fow, and high fow. For 
this purpose, we designed a 3D printed water-fow meter as 
shown in Figure 20. When any or both of the faucet levers 
(cold and/or hot) were turned on, water fowed through the 
meter causing its blades to rotate which could be detected 
by the UWB radar. The rotation frequency of the water fow 
meter depends on the fow rate of water coming from the tap, 
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thus the approximate amount of water fow can be found with score of 0.95. Figure 21(b), shows the confusion matrix of the 
our classifcation model. smaller tag attached to the freezer. 

a b

Sensing tag

c

Figure 20. (a, b) Printed water fow-meter with rotary tag. (c) Water 
fow-meter in action. 

In our experiment, the faucet levers were interacted with 10 
times for both low and high fow. Low fow was activated 
by turning on one of the faucet levers, while high fow was 
activated by turning both on. Each interaction included open-
ing the tap and letting the water run for 20 seconds before 
closing the tap. After running our deep learning classifcation 
algorithm with leave-one-cycle-out cross-validation, we were 
able to detect the three different states of fow with a mean F1 
score of 0.9. 

DISCUSSION, LIMITATIONS, AND FUTURE WORK 
We present Mechanobeat, a system that employs: electronics-
free tags that can be used to instrument everyday objects, 
a UWB radar array, and a novel sensing technique that 
leverages a 1D CNN classifcation model. We have shown 
that MechanoBeat flls a void in existing activity recogni-
tion and object interaction systems. Unlike other systems, 
MechanoBeat is capable of detecting tag activation without 
line-of-sight and shows strong performance even with non-
static tags. In addition, we have designed various oscillation 
tags that can be made with common and affordable materials. 

Furthermore, we have explored the limits of oscillation based 
tags and found that the classifcation accuracy fell when os-
cillation displacement was smaller than one millimeter. This 
fnding opens the possibility for smaller tags and potentially 
totally new tag implementations. 

As a working prototype, our tag designs are relatively large 
in size. However, we have created a smaller version of the 
pendulum based tag reducing the size by half. With an arm 
length of 38 mm including a metallic ball with a 6.35 mm 
diameter, as shown on the right side of Figure 21(a), we were 
able to successfully detect the interactions with a mean F1 

96.6

3.4

4.9

95.1

Inactive Active
Actual

Inactive

Active

Pr
ed

ic
te

d

10

20

30

40

50

60

70

80

90

80
 m

m

38
 m

m

6.35 mm

12.7 mm

ba

Figure 21. (a) Smaller version of a tag compared to a large tag. (b) 
Confusion matrix for detecting smaller tag. 

We have tested MechanoBeat in a kitchen environment with 
two radars and multiple tags. However, more experiments can 
be conducted to better understand how MechanoBeat performs 
in complex scenarios such as environments with multiple peo-
ple interacting with multiple tags. The tags were kept on their 
respective stationary appliances for a few months to simulate 
everyday use, in that period the tags produced the same os-
cillation frequencies throughout. A long-term deployment of 
MechanoBeat could further validate our system against me-
chanical wear and tear and allow us to examine the durability 
of our system over an extended time frame. Such a deployment 
would also provide us with additional data, which could be 
used to train our detection model, further improving accuracy. 

CONCLUSION 
We have developed cheap electronics-free tags, that use har-
monic oscillation to produce unique frequencies when inter-
acted with. We have demonstrated how these tags can be 
deployed to monitor object and environmental interactions in 
a real world setting. Using our proposed signal processing 
pipeline and deep learning algorithm, we are successful in 
detecting tag oscillation in both line-of-sight and non-line-of-
sight scenarios. Furthermore, our sensing approach uses only 
RF refections from the tag oscillation captured by UWB radar 
without the need for additional information. 
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